Topological Phases of Matter

Topological Phases of Matter

Author: Roderich Moessner

Publisher: Cambridge University Press

Published: 2021-04-29

Total Pages: 393

ISBN-13: 1107105536

DOWNLOAD EBOOK

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.


Topology In Condensed Matter: An Introduction

Topology In Condensed Matter: An Introduction

Author: Miguel A N Araujo

Publisher: World Scientific

Published: 2021-05-19

Total Pages: 276

ISBN-13: 9811237239

DOWNLOAD EBOOK

This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.


Topological Phases in Condensed Matter Physics

Topological Phases in Condensed Matter Physics

Author: Saurabh Basu

Publisher: Springer Nature

Published: 2023-10-16

Total Pages: 226

ISBN-13: 9819953219

DOWNLOAD EBOOK

The book is mainly designed for post-graduate students to learn modern-day condensed matter physics. While emphasizing an experiment called the ‘Quantum Hall effect’, it introduces the subject of 'Topology' and how the topological invariants are related to the quantization of the Hall plateaus. Thus, the content tries to deliver an account of the topological aspects of materials that have shaped the study of condensed matter physics in recent times. The subject is often quite involved for a student to grasp the fundamentals and relate them to physical phenomena. Further, these topics are mostly left out of the undergraduate curriculum, although they often require a simplistic view of the concepts involved to be presented pedagogically. The book contains examples, worked-out concepts, important derivations, diagrams for illustration, etc. to aid the understanding of the students. The book also emphasizes the experimental discoveries that put the subject in its perspective and elaborate on the applications which are likely to be of interest to scientists and engineers.


Topology in Condensed Matter

Topology in Condensed Matter

Author: Michael I. Monastyrsky

Publisher: Springer Science & Business Media

Published: 2006-02-04

Total Pages: 263

ISBN-13: 3540312641

DOWNLOAD EBOOK

This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.


Topological Phase Transitions And New Developments

Topological Phase Transitions And New Developments

Author: Lars Brink

Publisher: World Scientific

Published: 2018-08-13

Total Pages: 263

ISBN-13: 9813271353

DOWNLOAD EBOOK

Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.


Topological Insulators

Topological Insulators

Author: Shun-Qing Shen

Publisher: Springer Science & Business Media

Published: 2013-01-11

Total Pages: 234

ISBN-13: 364232858X

DOWNLOAD EBOOK

Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.


Introduction to Topological Quantum Computation

Introduction to Topological Quantum Computation

Author: Jiannis K. Pachos

Publisher: Cambridge University Press

Published: 2012-04-12

Total Pages: 220

ISBN-13: 1139936689

DOWNLOAD EBOOK

Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.


Topological Phases in Condensed Matter Systems

Topological Phases in Condensed Matter Systems

Author:

Publisher:

Published: 2014

Total Pages: 157

ISBN-13: 9789088919510

DOWNLOAD EBOOK

"The research described in this thesis focuses on topological phases in condensed matter systems. It can be roughly divided into two parts. In the first part noninteracting systems are studied. The symmetry algebra of a charged spin-1/2 particle coupled to a non-Abelian magnetic field is determined, which explains the finite and infinite degeneracy of the energy. This system is a candidate for a continuum model of a three-dimensional topological insulator. Next, a two-dimensional version is considered on a sphere, where its spectrum is solved. The planar version of the sam model is probed by the insertion of a non-Abelian flux. Starting from a spin-polarized state, the adiabatic insertion of the flux results in a state with nontrivial spin-texture which is recognized as a quantum Hall skyrmion. The second part covers topological phases which stem from an underlying interacting model and that carry quasiparticles with fractional statistics. By applying a technique called topological symmetry breaking transitions between different phases can be induced. A careful treatment shows that different domains may appear in the broken phase separated by domain walls and it leads to a clear interpretation of confined particles. Moreover, phase transitions induced by multilayered condensates are considered. Non-Abelian phases as well as an entire hierarchy of Abelian fractional quantum Hall states are treated. A special focus is given to the study of the one-dimensional boundary between the two phases."--Samenvatting auteur.


Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter

Author: Bei Zeng

Publisher: Springer

Published: 2019-03-28

Total Pages: 364

ISBN-13: 1493990845

DOWNLOAD EBOOK

This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.


Field Theories of Condensed Matter Physics

Field Theories of Condensed Matter Physics

Author: Eduardo Fradkin

Publisher: Cambridge University Press

Published: 2013-02-28

Total Pages: 855

ISBN-13: 0521764440

DOWNLOAD EBOOK

Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.