Topological Phases of Matter

Topological Phases of Matter

Author: Roderich Moessner

Publisher: Cambridge University Press

Published: 2021-04-29

Total Pages: 393

ISBN-13: 1107105536

DOWNLOAD EBOOK

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.


Topology In Condensed Matter: An Introduction

Topology In Condensed Matter: An Introduction

Author: Miguel A N Araujo

Publisher: World Scientific

Published: 2021-05-19

Total Pages: 276

ISBN-13: 9811237239

DOWNLOAD EBOOK

This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.


Topology in Condensed Matter

Topology in Condensed Matter

Author: Michael I. Monastyrsky

Publisher: Springer Science & Business Media

Published: 2006-02-04

Total Pages: 263

ISBN-13: 3540312641

DOWNLOAD EBOOK

This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.


Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors

Author: B. Andrei Bernevig

Publisher: Princeton University Press

Published: 2013-04-07

Total Pages: 264

ISBN-13: 1400846730

DOWNLOAD EBOOK

This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.


Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics

Author: Henrik Bruus

Publisher: Oxford University Press

Published: 2004-09-02

Total Pages: 458

ISBN-13: 0198566336

DOWNLOAD EBOOK

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.


Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter

Author: Bei Zeng

Publisher: Springer

Published: 2019-03-28

Total Pages: 372

ISBN-13: 1493990845

DOWNLOAD EBOOK

This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.


Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

Author: Abhijeet Alase

Publisher: Springer Nature

Published: 2019-11-20

Total Pages: 213

ISBN-13: 3030319601

DOWNLOAD EBOOK

This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch’s Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension.


Topological Aspects of Condensed Matter Physics

Topological Aspects of Condensed Matter Physics

Author: Claudio Chamon

Publisher: Oxford University Press

Published: 2017

Total Pages: 705

ISBN-13: 019878578X

DOWNLOAD EBOOK

This book contains lecture notes by world experts on topological quantum phenomena, which are being developed at unprecedented rates in novel material systems.


Advanced Quantum Condensed Matter Physics

Advanced Quantum Condensed Matter Physics

Author: Michael El-Batanouny

Publisher: Cambridge University Press

Published: 2020-03-26

Total Pages: 839

ISBN-13: 1108480845

DOWNLOAD EBOOK

Based on an established course, this comprehensive textbook on advanced quantum condensed matter physics covers one-body, many-body and topological perspectives. Discussing modern topics and containing end-of-chapter exercises throughout, it is ideal for graduate students studying advanced condensed matter physics.


A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

Author: Antonio Sergio Teixeira Pires

Publisher: Morgan & Claypool Publishers

Published: 2019-03-21

Total Pages: 171

ISBN-13: 1643273744

DOWNLOAD EBOOK

In the last years there have been great advances in the applications of topology and differential geometry to problems in condensed matter physics. Concepts drawn from topology and geometry have become essential to the understanding of several phenomena in the area. Physicists have been creative in producing models for actual physical phenomena which realize mathematically exotic concepts and new phases have been discovered in condensed matter in which topology plays a leading role. An important classification paradigm is the concept of topological order, where the state characterizing a system does not break any symmetry, but it defines a topological phase in the sense that certain fundamental properties change only when the system passes through a quantum phase transition. The main purpose of this book is to provide a brief, self-contained introduction to some mathematical ideas and methods from differential geometry and topology, and to show a few applications in condensed matter. It conveys to physicists the basis for many mathematical concepts, avoiding the detailed formality of most textbooks.