This book discusses stochastic game theory and related concepts. Topics focused upon in the book include matrix games, finite, infinite, and undiscounted stochastic games, n-player cooperative games, minimax theorem, and more. In addition to important definitions and theorems, the book provides readers with a range of problem-solving techniques and exercises. This book is of value to graduate students and readers of probability and statistics alike.
This volume is based on lectures given at the NATO Advanced Study Institute on "Stochastic Games and Applications," which took place at Stony Brook, NY, USA, July 1999. It gives the editors great pleasure to present it on the occasion of L.S. Shapley's eightieth birthday, and on the fiftieth "birthday" of his seminal paper "Stochastic Games," with which this volume opens. We wish to thank NATO for the grant that made the Institute and this volume possible, and the Center for Game Theory in Economics of the State University of New York at Stony Brook for hosting this event. We also wish to thank the Hebrew University of Jerusalem, Israel, for providing continuing financial support, without which this project would never have been completed. In particular, we are grateful to our editorial assistant Mike Borns, whose work has been indispensable. We also would like to acknowledge the support of the Ecole Poly tech nique, Paris, and the Israel Science Foundation. March 2003 Abraham Neyman and Sylvain Sorin ix STOCHASTIC GAMES L.S. SHAPLEY University of California at Los Angeles Los Angeles, USA 1. Introduction In a stochastic game the play proceeds by steps from position to position, according to transition probabilities controlled jointly by the two players.
To honor Rafail Z. Khasminskii, on his seventy-fifth birthday, for his contributions to stochastic processes and nonparametric estimation theory an IMA participating institution conference entitled "Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems" was held. This volume commemorates this special event. Dedicated to Professor Khasminskii, it consists of nine papers on various topics in probability and statistics.
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.
Stochastic games provide a versatile model for reactive systems that are affected by random events. This dissertation advances the algorithmic theory of stochastic games to incorporate multiple players, whose objectives are not necessarily conflicting. The basis of this work is a comprehensive complexity-theoretic analysis of the standard game-theoretic solution concepts in the context of stochastic games over a finite state space. One main result is that the constrained existence of a Nash equilibrium becomes undecidable in this setting. This impossibility result is accompanied by several positive results, including efficient algorithms for natural special cases.
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
This volume contains a selection of papers on recent developments in fields such as stochastic processes, multivariate data analysis and stochastic models in operations research, earth and life sciences and information theory, from an applicative perspective. Some of them have been extracted from lectures given at the Department of Statistics and Operations Research at the University of Granada for the past two years (Kai Lai Chung and Marcel F Neuts, among others). All the papers have been carefully selected and revised.