Topics in Computational Wave Propagation

Topics in Computational Wave Propagation

Author: Mark Ainsworth

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 408

ISBN-13: 3642554830

DOWNLOAD EBOOK

These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.


Topics in Computational Wave Propagation

Topics in Computational Wave Propagation

Author: Mark Ainsworth

Publisher: Springer

Published: 2011-09-27

Total Pages: 410

ISBN-13: 9783642554841

DOWNLOAD EBOOK

These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.


Computational Wave Dynamics

Computational Wave Dynamics

Author: Hitoshi Gotoh

Publisher: World Scientific Publishing Company

Published: 2013-06-04

Total Pages: 251

ISBN-13: 9814449725

DOWNLOAD EBOOK

This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD).The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods.It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows.


Wave Propagation in Viscoelastic and Poroelastic Continua

Wave Propagation in Viscoelastic and Poroelastic Continua

Author: Martin Schanz

Publisher: Springer Science & Business Media

Published: 2012-11-27

Total Pages: 176

ISBN-13: 3540445757

DOWNLOAD EBOOK

Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.


Inverse Problems in Wave Propagation

Inverse Problems in Wave Propagation

Author: Guy Chavent

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 502

ISBN-13: 1461218780

DOWNLOAD EBOOK

Inverse problems in wave propagation occur in geophysics, ocean acoustics, civil and environmental engineering, ultrasonic non-destructive testing, biomedical ultrasonics, radar, astrophysics, as well as other areas of science and technology. The papers in this volume cover these scientific and technical topics, together with fundamental mathematical investigations of the relation between waves and scatterers.


Essentials of Computational Electromagnetics

Essentials of Computational Electromagnetics

Author: Xin-Qing Sheng

Publisher: John Wiley & Sons

Published: 2012-03-22

Total Pages: 291

ISBN-13: 0470829656

DOWNLOAD EBOOK

Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem


An Introduction To Electromagnetic Wave Propagation And Antennas

An Introduction To Electromagnetic Wave Propagation And Antennas

Author: Shane Cloude

Publisher: CRC Press

Published: 1995-12-20

Total Pages: 196

ISBN-13: 9781857282412

DOWNLOAD EBOOK

This text should serve as an introduction to the application of electromagnetics EM, following an initial course in basic EM theory. A particular feature of the book is that it examines time domain rather than frequency domain methods in depth.; This book is intended for advanced undergraduate and graduates in electrical and electronic engineering. Research and practitioners in electromagnetics in electrical and electronic engineering and physics.


Waves and Fields in Inhomogeneous Media

Waves and Fields in Inhomogeneous Media

Author: Weng Cho Chew

Publisher: IEEE Computer Society Press

Published: 1995

Total Pages: 642

ISBN-13:

DOWNLOAD EBOOK

Electrical Engineering/Electromagnetics Waves and Fields in Inhomogeneous Media A Volume in the IEEE Press Series on Electromagnetic Waves Donald G. Dudley, Series Editor ".it is one of the best wave propagation treatments to appear in many years." Gerardo G. Tango, CPG, Consulting Seismologist-Acoustician, Covington, LA This comprehensive text thoroughly covers fundamental wave propagation behaviors and computational techniques for waves in inhomogeneous media. The author describes powerful and sophisticated analytic and numerical methods to solve electromagnetic problems for complex media and geometry as well. Problems are presented as realistic models of actual situations which arise in the areas of optics, radio wave propagation, geophysical prospecting, nondestructive testing, biological sensing, and remote sensing. Key topics covered include: * Analytical methods for planarly, cylindrically and spherically layered media * Transient waves, including the Cagniard-de Hoop method * Variational methods for the scalar wave equation and the electromagnetic wave equation * Mode-matching techniques for inhomogeneous media * The Dyadic Green's function and its role in simplifying problem-solving in inhomogeneous media * Integral equation formulations and inverse problems * Time domain techniques for inhomogeneous media This book will be of interest to electromagnetics and remote sensing engineers, physicists, scientists, and geophysicists. This IEEE Press reprinting of the 1990 version published by Van Nostrand Reinhold incorporates corrections and minor updating. Also in the series. Mathematical Foundations for Electromagnetic Theory by Donald G. Dudley, University of Arizona at Tucson This volume in the series lays the mathematical foundations for the study of advanced topics in electromagnetic theory. Important subjects covered include linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. 1994 Hardcover 264 pp ISBN 0-7803-1022-5 IEEE Order No. PC3715 About the Series The IEEE Press Series on Electromagnetic Waves consists of new titles as well as reprints and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level.


Analytical and Numerical Methods for Wave Propagation in Fluid Media

Analytical and Numerical Methods for Wave Propagation in Fluid Media

Author: K. Murawski

Publisher: World Scientific

Published: 2002

Total Pages: 260

ISBN-13: 9789812776631

DOWNLOAD EBOOK

This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.


Parabolic Equation Methods for Electromagnetic Wave Propagation

Parabolic Equation Methods for Electromagnetic Wave Propagation

Author: Mireille Levy

Publisher: IET

Published: 2000

Total Pages: 360

ISBN-13: 9780852967645

DOWNLOAD EBOOK

Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR