Topics in Classical and Modern Analysis

Topics in Classical and Modern Analysis

Author: Martha Abell

Publisher: Springer Nature

Published: 2019-10-21

Total Pages: 384

ISBN-13: 3030122778

DOWNLOAD EBOOK

Different aspects of harmonic analysis, complex analysis, sampling theory, approximation theory and related topics are covered in this volume. The topics included are Fourier analysis, Padè approximation, dynamical systems and difference operators, splines, Christoffel functions, best approximation, discrepancy theory and Jackson-type theorems of approximation. The articles of this collection were originated from the International Conference in Approximation Theory, held in Savannah, GA in 2017, and organized by the editors of this volume.


An Introduction to Complex Analysis

An Introduction to Complex Analysis

Author: Wolfgang Tutschke

Publisher: CRC Press

Published: 2004-06-25

Total Pages: 480

ISBN-13: 1584884789

DOWNLOAD EBOOK

Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications. Alternate approaches, such as Fichera's proof of the Goursat Theorem and Estermann's proof of the Cauchy's Integral Theorem, are also presented for comparison. Discussions include holomorphic functions, the Weierstrass Convergence Theorem, analytic continuation, isolated singularities, homotopy, Residue theory, conformal mappings, special functions and boundary value problems. More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent volume for reference.


Introduction To Classical And Modern Analysis And Their Application To Group Representation Theory

Introduction To Classical And Modern Analysis And Their Application To Group Representation Theory

Author: Debabrata Basu

Publisher: World Scientific Publishing Company

Published: 2011-02-28

Total Pages: 386

ISBN-13: 9813101067

DOWNLOAD EBOOK

This book is suitable for use in any graduate course on analytical methods and their application to representation theory. Each concept is developed with special emphasis on lucidity and clarity. The book also shows the direct link of Cauchy-Pochhammer theory with the Hadamard-Reisz-Schwartz-Gel'fand et al. regularization. The flaw in earlier works on the Plancheral formula for the universal covering group of SL(2,R) is pointed out and rectified. This topic appears here for the first time in the correct form.Existing treatises are essentially magnum opus of the experts, intended for other experts in the field. This book, on the other hand, is unique insofar as every chapter deals with topics in a way that differs remarkably from traditional treatment. For example, Chapter 3 presents the Cauchy-Pochhammer theory of gamma, beta and zeta function in a form which has not been presented so far in any treatise of classical analysis.


Classical and Modern Numerical Analysis

Classical and Modern Numerical Analysis

Author: Azmy S. Ackleh

Publisher: CRC Press

Published: 2009-07-20

Total Pages: 628

ISBN-13: 1420091581

DOWNLOAD EBOOK

Classical and Modern Numerical Analysis: Theory, Methods and Practice provides a sound foundation in numerical analysis for more specialized topics, such as finite element theory, advanced numerical linear algebra, and optimization. It prepares graduate students for taking doctoral examinations in numerical analysis.The text covers the main areas o


A Course of Modern Analysis

A Course of Modern Analysis

Author: E. T. Whittaker

Publisher: Cambridge University Press

Published: 1927

Total Pages: 620

ISBN-13: 9780521588072

DOWNLOAD EBOOK

This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions.


A Concrete Approach to Classical Analysis

A Concrete Approach to Classical Analysis

Author: Marian Muresan

Publisher: Springer Science & Business Media

Published: 2015-09-16

Total Pages: 443

ISBN-13: 0387789332

DOWNLOAD EBOOK

Mathematical analysis offers a solid basis for many achievements in applied mathematics and discrete mathematics. This new textbook is focused on differential and integral calculus, and includes a wealth of useful and relevant examples, exercises, and results enlightening the reader to the power of mathematical tools. The intended audience consists of advanced undergraduates studying mathematics or computer science. The author provides excursions from the standard topics to modern and exciting topics, to illustrate the fact that even first or second year students can understand certain research problems. The text has been divided into ten chapters and covers topics on sets and numbers, linear spaces and metric spaces, sequences and series of numbers and of functions, limits and continuity, differential and integral calculus of functions of one or several variables, constants (mainly pi) and algorithms for finding them, the W - Z method of summation, estimates of algorithms and of certain combinatorial problems. Many challenging exercises accompany the text. Most of them have been used to prepare for different mathematical competitions during the past few years. In this respect, the author has maintained a healthy balance of theory and exercises.


Integration and Modern Analysis

Integration and Modern Analysis

Author: John J. Benedetto

Publisher: Springer Science & Business Media

Published: 2010-01-08

Total Pages: 589

ISBN-13: 0817646566

DOWNLOAD EBOOK

This textbook and treatise begins with classical real variables, develops the Lebesgue theory abstractly and for Euclidean space, and analyzes the structure of measures. The authors' vision of modern real analysis is seen in their fascinating historical commentary and perspectives with other fields. There are comprehensive treatments of the role of absolute continuity, the evolution of the Riesz representation theorem to Radon measures and distribution theory, weak convergence of measures and the Dieudonné–Grothendieck theorem, modern differentiation theory, fractals and self-similarity, rearrangements and maximal functions, and surface and Hausdorff measures. There are hundreds of illuminating exercises, and extensive, focused appendices on functional and Fourier analysis. The presentation is ideal for the classroom, self-study, or professional reference.


Foundations of Modern Analysis

Foundations of Modern Analysis

Author: Avner Friedman

Publisher: Courier Corporation

Published: 1982-01-01

Total Pages: 276

ISBN-13: 9780486640624

DOWNLOAD EBOOK

Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.


An Introduction to Modern Analysis

An Introduction to Modern Analysis

Author: Vicente Montesinos

Publisher: Springer

Published: 2015-05-04

Total Pages: 884

ISBN-13: 3319124811

DOWNLOAD EBOOK

Examining the basic principles in real analysis and their applications, this text provides a self-contained resource for graduate and advanced undergraduate courses. It contains independent chapters aimed at various fields of application, enhanced by highly advanced graphics and results explained and supplemented with practical and theoretical exercises. The presentation of the book is meant to provide natural connections to classical fields of applications such as Fourier analysis or statistics. However, the book also covers modern areas of research, including new and seminal results in the area of functional analysis.


Classical and Modern Methods in Summability

Classical and Modern Methods in Summability

Author: Johann Boos

Publisher: Clarendon Press

Published: 2000

Total Pages: 616

ISBN-13: 9780198501657

DOWNLOAD EBOOK

Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.