This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.
Written by authors working at the forefront of research, this accessible treatment presents the current status of the field of collider-based particle physics at the highest energies available, as well as recent results and experimental techniques. It is clearly divided into three sections; The first covers the physics -- discussing the various aspects of the Standard Model as well as its extensions, explaining important experimental results and highlighting the expectations from the Large Hadron Collider (LHC). The second is dedicated to the involved technologies and detector concepts, and the third covers the important - but often neglected - topics of the organisation and financing of high-energy physics research. A useful resource for students and researchers from high-energy physics.
The 32nd International Conference on High Energy Physics belongs to the Rochester Conference Series, and is the most important international conference in 2004 on high energy physics. The proceedings provide a comprehensive review on the recent developments in experimental and theoretical particle physics. The latest results on Top, Higgs search, CP violation, neutrino mixing, pentaquarks, heavy quark mesons and baryons, search for new particles and new phenomena, String theory, Extra dimension, Black hole and Lattice calculation are discussed extensively. The topics covered include not only those of main interest to the high energy physics community, but also recent research and future plans. Contents: Neutrino Masses and MixingsQuark Matter and Heavy Ion CollisionsParticle Astrophysics and CosmologyElectroweak PhysicsQCD Hard InteractionsQCD Soft InteractionsComputational Quantum Field TheoryCP Violation, Rare Kaon Decay and CKMR&D for Future Accelerator and DetectorHadron Spectroscopy and ExoticsHeavy Quark Mesons and BaryonsBeyond the Standard ModelString Theory Readership: Experimental and theoretical physicists and graduate students in the fields of particle physics, nuclear physics, astrophysics and cosmology.Keywords:High Energy Physics;Particle Physics;Electroweak;QCD;Heavy Quark;Neutrino;Particle Astrophysics;Hadron Spectroscopy;CP Violation;Quark Matter;Future Accelerator
Particle physics is a science about the symmetries of our world. The Standard Model is the fundamental theory of microworld. Particle dynamics in the Standard Model obeys strict symmetry laws with explicit experimental consequences. Priority problems of particle physics based on the Standard Model are more accurate theoretical predictions, experimental measurements and data analysis, proof of existence or non-existence of supersymmetry, top quark properties, Higgs boson, exotic quark states, and physics of neutrinos. In this collection of articles, many of these problems are discussed. We recommend this book for students, graduate students, and scientists working in the field of high energy physics.
This thesis introduces readers to the Standard Model, the top quark and its properties, before explaining the concept of spin correlation measurement. The first measurement of top quark spin correlations at the LHC in the lepton+jets decay channel is presented. As the heaviest elementary particle, the top quark plays an essential role in the Standard Model of elementary particle physics. In the case of top quarks being produced in pairs at hadron colliders, the Standard Model predicts their spins to be correlated. The degree of correlation depends on both the production mechanism and properties of the top quark. Any deviation from the Standard Model prediction can be an indicator for new physics phenomena. The thesis employs an advanced top quark reconstruction algorithm including dedicated identification of the up- and down-type quarks from the W boson decay.
This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.
This volume is a compilation of the lectures at TASI 2011, held in Boulder, Colorado, June 2011. They cover topics in theoretical particle physics including the Standard Model and beyond, collider physics, dark matter, and cosmology, at a level intended to be accessible to students at the initial stages of their research careers.
This proceedings volume contains the latest results from the field of particle physics. The contributions cover the current status of all the Large Hadron Collider (LHC) experiments, the implications of the LHC for cosmology, and the search for dark matter and nuclear astrophysics. It also includes work on the current status of the future International Linear Collider (ILC).
This proceedings volume contains pedagogical lectures on theoretical and experimental particle physics, cosmology and atomic trap physics. It also includes additional contributions that provide up-to-date information on new experimental results from accelerators, underground laboratories, and nuclear astrophysics. This combination of pedagogical talks and topical short talks provides comprehensive information to researchers in the fields of particle physics, cosmology and atomic trap physics. Sample Chapter(s). Chapter 1: New Physics in B and K Decays (1,704 KB). Contents: Cosmic Ray Velocity and Electric Charge Measurements in the AMS Experiment (L Arruda); Flavor and Chiral Oscillations with Dirac Spinors (A E Bernardini); Modification of the Casimir Effect Due to a Minimal Length Scale (U Harbach); Parton Energy Loss, Saturation, and Recombination at BRAHMS (E-J Kim); Spatial Confinement and Thermal Deconfinement in the Compactified Gross-Neveu Model (J M C Malbouisson); Currents on Superconducting Strings in an Unusual Environment (M A Metlitski); QCD Results at CDF (O Norniella); Quantization of Galilean Covariant Fields (E S Santos); Physics of Heavy Flavour at CDF (S Torre); Resonance Production at STAR (H Zhang); and other papers. Readership: Graduate students, researchers and academics in high energy physics, particle physics and astrophysics.