Part of the renowned Tool and Manufacturing Engineers Handbook Series, the Machining Vol. 1 helps you apply cost-effective techniques to achieve the best results for over 100 traditional and nontraditional machining processes. Chapters include: Principles of Metalcutting and Machinability, Tolerance Control, Cutting Tool Materials, Sawing, Broaching, Planing, Shaping, and Slotting, Turning and Boring, Milling, Grinding, Threading Gear and Spline Production, Nontraditional Machining, Machine Loading and Unloading, Machine Rebuilding, and much more!
This volume focuses on the practical application of processes for manufacturing plastic products. It includes information on design for manufacturability (DFM), material selection, process selection, dies, molds, and tooling, extrusion, injection molding, blow molding, thermoforming, lamination, rotational molding, casting, foam processing, compression and transfer molding, fiber reinforced processing, assembly and fabrication, quality, plant engineering and maintenance, management.
Part of the renowned Tool and Manufacturing Engineers Handbook Series, the Machining Vol. 1 helps you apply cost-effective techniques to achieve the best results for over 100 traditional and nontraditional machining processes. Chapters include: Principles of Metalcutting and Machinability, Tolerance Control, Cutting Tool Materials, Sawing, Broaching, Planing, Shaping, and Slotting, Turning and Boring, Milling, Grinding, Threading Gear and Spline Production, Nontraditional Machining, Machine Loading and Unloading, Machine Rebuilding, and much more!
"This easy-to-use pocket book contains a wealth of up-to-date, useful, practical and hard-to- find information. With 160 matt laminated, greaseproof pages you'll enjoy glare-free reading and durability. Includes: data sheets, formulae, reference tables and equivalent charts. New content in the 3rd edition includes; Reamer and Drill Bit Types, Taper Pins, T-slot sizing, Counterboring/Sinking, Extended Angles Conversions for Cutting Tapers, Keyways and Keyseats, Woodruff Keys, Retaining Rings, 0-Rings, Flange Sizing, Common Workshop Metals, Adhesives, GD&T, Graph and Design Paper included at the back of the book. Engineers Black Book contains a wealth of up-to-date, useful, information within over 160 matt laminated grease proof pages. It is ideal for engineers, trades people, apprentices, machine shops, tool rooms and technical colleges." -- publisher website.
You'll rely on Forming to help you understand over 50 forming processes plus the advantages, limitations, and operating parameters for each process. Save valuable production time and gain a competitive edge with practical data that covers both the basics and advanced forming processes. Forming also helps you choose the most appropriate materials, utilize innovative die designs, and assess the advantages and limitations of different press types and processes.
It is a well acknowledged fact that virtually all of our modern-day components and assemblies rely to some extent on machining operations in their manufacturing process. Thus, there is clearly a substantive machining requirement which will continue to be of prime importance for the foreseeable future. Cutting Tool Technology provides a comprehensive guide to the latest developments in the use of cutting tool technology. The book covers new machining and tooling topics such as high-speed and hard-part machining, near-dry and dry-machining strategies, multi-functional tooling, ‘diamond-like’ and ‘atomically-modified’ coatings, plus many others. Also covered are subjects important from a research perspective, such as micro-machining and artificial intelligence coupled to neural network tool condition monitoring. A practical handbook complete with troubleshooting tables for common problems, Cutting Tool Technology is an invaluable reference for researchers, manufacturers and users of cutting tools.
Grinding is a crucial technology that employs specific abrasive processes for the fabrication of advanced products and surfaces. Handbook of Machining with Grinding Wheels, Second Edition highlights important industry developments that can lead to improved part quality, higher productivity, and lower costs. Divided into two parts, the book b
"This book is an essential reference for achieving maximum productivity from machine tools when tuning the most commonly used grades of carbon, alloy, stainless, and tool steels. More specifically, its purpose is to provide recommendations for selecting machining parameters in relationship with cutting tool materials and workplace materials. Manufacturing engineers and managers, machine shop supervisors, machine tool operators, CNC programmers, and cutting tool engineers and designers will all find this book an invaluable aid as they search for ways to improve the efficiency of their operations."--BOOK JACKET.
Hard machining is a relatively recent technology that can be defined as a machining operation, using tools with geometrically defined cutting edges, of a work piece that has hardness values typically in the 45-70HRc range. This operation always presents the challenge of selecting a cutting tool insert that facilitates high-precision machining of the component, but it presents several advantages when compared with the traditional methodology based in finish grinding operations after heat treatment of work pieces. Machining of Hard Materials aims to provide the reader with the fundamentals and recent advances in the field of hard machining of materials. All the chapters are written by international experts in this important field of research. They cover topics such as: • advanced cutting tools for the machining of hard materials; • the mechanics of cutting and chip formation; • surface integrity; • modelling and simulation; and • computational methods and optimization. Machining of Hard Materials can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals in machining and related industries. It can also be used as a text for advanced undergraduate or postgraduate students studying mechanical engineering, manufacturing, or materials.
A Complete Reference Covering the Latest Technology in Metal Cutting Tools, Processes, and Equipment Metal Cutting Theory and Practice, Third Edition shapes the future of material removal in new and lasting ways. Centered on metallic work materials and traditional chip-forming cutting methods, the book provides a physical understanding of conventional and high-speed machining processes applied to metallic work pieces, and serves as a basis for effective process design and troubleshooting. This latest edition of a well-known reference highlights recent developments, covers the latest research results, and reflects current areas of emphasis in industrial practice. Based on the authors’ extensive automotive production experience, it covers several structural changes, and includes an extensive review of computer aided engineering (CAE) methods for process analysis and design. Providing updated material throughout, it offers insight and understanding to engineers looking to design, operate, troubleshoot, and improve high quality, cost effective metal cutting operations. The book contains extensive up-to-date references to both scientific and trade literature, and provides a description of error mapping and compensation strategies for CNC machines based on recently issued international standards, and includes chapters on cutting fluids and gear machining. The authors also offer updated information on tooling grades and practices for machining compacted graphite iron, nickel alloys, and other hard-to-machine materials, as well as a full description of minimum quantity lubrication systems, tooling, and processing practices. In addition, updated topics include machine tool types and structures, cutting tool materials and coatings, cutting mechanics and temperatures, process simulation and analysis, and tool wear from both chemical and mechanical viewpoints. Comprised of 17 chapters, this detailed study: Describes the common machining operations used to produce specific shapes or surface characteristics Contains conventional and advanced cutting tool technologies Explains the properties and characteristics of tools which influence tool design or selection Clarifies the physical mechanisms which lead to tool failure and identifies general strategies for reducing failure rates and increasing tool life Includes common machinability criteria, tests, and indices Breaks down the economics of machining operations Offers an overview of the engineering aspects of MQL machining Summarizes gear machining and finishing methods for common gear types, and more Metal Cutting Theory and Practice, Third Edition emphasizes the physical understanding and analysis for robust process design, troubleshooting, and improvement, and aids manufacturing engineering professionals, and engineering students in manufacturing engineering and machining processes programs.