Timing Synchronization and Node Localization in Wireless Sensor Networks

Timing Synchronization and Node Localization in Wireless Sensor Networks

Author: Aitzaz Ahmad

Publisher:

Published: 2013

Total Pages: 145

ISBN-13:

DOWNLOAD EBOOK

Wireless sensor networks (WSNs) consist of a large number of sensor nodes, capable of on-board sensing and data processing, that are employed to observe some phenomenon of interest. With their desirable properties of flexible deployment, resistance to harsh environment and lower implementation cost, WSNs envisage a plethora of applications in diverse areas such as industrial process control, battle- field surveillance, health monitoring, and target localization and tracking. Much of the sensing and communication paradigm in WSNs involves ensuring power efficient transmission and finding scalable algorithms that can deliver the desired performance objectives while minimizing overall energy utilization. Since power is primarily consumed in radio transmissions delivering timing information, clock synchronization represents an indispensable requirement to boost network lifetime. This dissertation focuses on deriving efficient estimators and performance bounds for the clock parameters in a classical frequentist inference approach as well as in a Bayesian estimation framework. A unified approach to the maximum likelihood (ML) estimation of clock offset is presented for different network delay distributions. This constitutes an analytical alternative to prior works which rely on a graphical maximization of the likelihood function. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using factor graphs. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. This extends the current literature to cases where the clock offset is not deterministic, but is in fact a random process. A natural extension of pairwise synchronization is to develop algorithms for the more challenging case of network-wide synchronization. Assuming exponentially distributed random delays, a network-wide clock synchronization algorithm is proposed using a factor graph representation of the network. Message passing using the max- product algorithm is adopted to derive the update rules for the proposed iterative procedure. A closed form solution is obtained for each node's belief about its clock offset at each iteration. Identifying the close connections between the problems of node localization and clock synchronization, we also address in this dissertation the problem of joint estimation of an unknown node's location and clock parameters by incorporating the effect of imperfections in node oscillators. In order to alleviate the computational complexity associated with the optimal maximum a-posteriori estimator, two iterative approaches are proposed as simpler alternatives. The first approach utilizes an Expectation-Maximization (EM) based algorithm which iteratively estimates the clock parameters and the location of the unknown node. The EM algorithm is further simplified by a non-linear processing of the data to obtain a closed form solution of the location estimation problem using the least squares (LS) approach. The performance of the estimation algorithms is benchmarked by deriving the Hybrid Cramer-Rao lower bound (HCRB) on the mean square error (MSE) of the estimators. We also derive theoretical lower bounds on the MSE of an estimator in a classical frequentist inference approach as well as in a Bayesian estimation framework when the likelihood function is an arbitrary member of the exponential family. The lower bounds not only serve to compare various estimators in our work, but can also be useful in their own right in parameter estimation theory. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148131


Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks

Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks

Author: Radha Poovendran

Publisher: Springer Science & Business Media

Published: 2007-12-03

Total Pages: 396

ISBN-13: 0387462767

DOWNLOAD EBOOK

This book presents the latest research results in the area of secure localization for both wireless mobile ad hoc networks and wireless sensor networks. It is suitable as a text for computer science courses in wireless systems and security. It includes implementation studies with mica2 mote sensors. Due to the open spectrum nature of wireless communication, it is subject to attacks and intrusions. Hence the wireless network synchronization needs to be both robust and secure. Furthermore, issues such as energy constraints and mobility make the localization process even more challenging. The book will also interest developers of secure wireless systems.


Node Localization in Wireless Sensor Networks

Node Localization in Wireless Sensor Networks

Author: Xue Zhang

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 58

ISBN-13: 3031016831

DOWNLOAD EBOOK

In sensor network applications, measured data are often meaningful only when the location is accurately known. In this booklet, we study research problems associated with node localization in wireless sensor networks. We describe sensor network localization problems in terms of a detection and estimation framework and we emphasize specifically a cooperative process where sensors with known locations are used to localize nodes at unknown locations. In this class of problems, even if the location of a node is known, the wireless links and transmission modalities between two nodes may be unknown. In this case, sensor nodes are used to detect the location and estimate pertinent data transmission activities between nodes. In addition to the broader problem of sensor localization, this booklet studies also specific localization measurements such as time of arrival (TOA), received signal strength (RSS), and direction of arrival (DOA). The sequential localization algorithm, which uses a subset of sensor nodes to estimate nearby sensor nodes' locations is discussed in detail. Extensive bibliography is given for those readers who want to delve further into specific topics.


Synchronization in Wireless Sensor Networks

Synchronization in Wireless Sensor Networks

Author: Erchin Serpedin

Publisher: Cambridge University Press

Published: 2009-07-30

Total Pages: 245

ISBN-13: 0521764424

DOWNLOAD EBOOK

Presents the key clock synchronization protocols, emphasizing design and optimization techniques for building efficient estimation schemes and performance benchmarks.


Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks

Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks

Author: Radha Poovendran

Publisher: Springer

Published: 2006-11-14

Total Pages: 394

ISBN-13: 9780387327211

DOWNLOAD EBOOK

This book presents the latest research results in the area of secure localization for both wireless mobile ad hoc networks and wireless sensor networks. It is suitable as a text for computer science courses in wireless systems and security. It includes implementation studies with mica2 mote sensors. Due to the open spectrum nature of wireless communication, it is subject to attacks and intrusions. Hence the wireless network synchronization needs to be both robust and secure. Furthermore, issues such as energy constraints and mobility make the localization process even more challenging. The book will also interest developers of secure wireless systems.


Networking Wireless Sensors

Networking Wireless Sensors

Author: Bhaskar Krishnamachari

Publisher: Cambridge University Press

Published: 2005-12-22

Total Pages: 224

ISBN-13: 9781139447669

DOWNLOAD EBOOK

Wireless sensor networks promise an unprecedented fine-grained interface between the virtual and physical worlds. They are one of the most rapidly developing information technologies, with applications in a wide range of fields including industrial process control, security and surveillance, environmental sensing, and structural health monitoring. Originally published in 2005, this book provides a detailed and organized survey of the field. It shows how the core challenges of energy efficiency, robustness, and autonomy are addressed in these systems by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create algorithms and protocols and engineers implementing integrated solutions, it also contains many exercises and can be used by graduate students taking courses in networks.


Clock Synchronization and Localization for Wireless Sensor Network

Clock Synchronization and Localization for Wireless Sensor Network

Author: Cheng-Yu Han

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Wireless sensor networks (WSNs) play an important role in applications such as environmental monitoring, source tracking, and health care,... In WSN, sensors have the ability to perform data sampling, distributed computing and information fusion. To perform such complex tasks, clock synchronization and localization are two fundamental and essential algorithms. WSNs have been widely studied in the past years, and the scientific literature reports many outcomes that make them applicable for some applications. For some others, research still needs to find solutions to some of the challenges posed by battery limitation, dynamicity, and low computing clock rate. With the aim of contributing to the research on WSN, this thesis proposes new algorithms for both clock synchronization and localization. For clock synchronization, sensors converge their local physical clock to perform data fusion. By applying the clock synchronization algorithm, sensors converge the time difference and therefore work at the same rate. In view of dynamicity, low computing and sparsity of WSN, a new pulse-coupled decentralized synchronization algorithm is proposed to improve the precision of the synchronization. The benefit of this kind of algorithm is that sensors only exchange zero-bit pulse instead of packets, so not only the communication is efficient but also robust to any failure of the sensors in the network. Localization of sensors has been widely studied. However, the quality and the accuracy of the localization still have a large room to improve. This thesis apply Leave-out Sign-dominant Correlated Regions (LSCR) algorithm to localization problem. With LSCR, one evaluates the accurate estimates of confidence regions with prescribed confidence levels, which provide not only the location but also the confidence of the estimation. In this thesis, several localization approaches are implemented and compared. The simulation result shows under mild assumptions, LSCR obtains competitive results compared to other methods.


Synchronous data acquisition with wireless sensor networks

Synchronous data acquisition with wireless sensor networks

Author: Funck, Jürgen Helmut

Publisher: Universitätsverlag der TU Berlin

Published: 2018-07-19

Total Pages: 352

ISBN-13: 379832980X

DOWNLOAD EBOOK

Wireless sensor networks (WSN) are predicted to play a key role in future technological developments like the internet of things. Already they are beginning to be used in many applications not only in the scientific and industrial domains. One of the biggest challenges, when using WSN, is to fuse and evaluate data from different sensor nodes. Synchronizing the data acquisition of the nodes is a key enabling factor for this. So far research has been focused on synchronizing the clocks of the nodes, largely neglecting the implications for the actual measurement results. This thesis investigates the relation between synchronization accuracy and quality of measurement results. Two different classes of time synchronous data acquisition are investigated: event detection and waveform sampling. A model is developed that describes a WSN as a generic multi-channel data acquisition system, thus enabling direct comparison to other existing systems. With the help of this model it is shown, that synchronization accuracy should best be expressed as uncertainty of the acquired timing information. This way, not only the contribution of the synchronization to the overall measurement uncertainty can be assessed, but also the synchronization accuracy required for an application can be estimated. The insights from the uncertainty analysis are used to develop two distinct approaches to synchronous data acquisition: a proactive and a reactive one. It is shown that the reactive approach can also be used to efficiently implement synchronous angular sampling, i.e. data acquisition synchronous to the rotation of a machine's shaft. Furthermore, testing methods are suggested, that evaluate the synchronized data acquisition of an existing WSN as a whole. These methods can be applied to other data acquisition systems without changes, thus enabling direct comparisons. The practical realization of a WSN is described, on which the developed data acquisition methods have been implemented. All implementations were thoroughly tested in experiments, using the suggested testing methods. This way it was revealed, that a system's interrupt handling procedures may have a strong influence on the data acquisition. Furthermore, it was shown that the effective use of fixed-point arithmetic enables synchronous angular sampling in real-time during a streaming measurement. Finally, two application examples are used to illustrate the utility of the implemented data acquisition: the acoustic localization of two sensor nodes on a straight line and a simple order tracking at an induction motor test bench. Diese Dissertation untersucht die Zusammenhänge zwischen Synchronisationsgenauigkeit und Qualität der Messergebnisse. Zwei Klassen von zeitsynchroner Datenerfassung werden dabei betrachtet: die Detektion von Ereignissen und die Aufnahme von Kurvenformen. Es wird ein Modell entwickelt, welches ein WSN als ein allgemeines mehrkanaliges Datenerfassungssystem beschreibt. Dies ermöglicht den direkten Vergleich zwischen WSN und anderen Messsystemen. Weiter wird mit Hilfe des Modells gezeigt, dass die Synchronisationsgenauigkeit vorzugsweise als Unsicherheit der Zeitinformation angegeben werden sollte. Hierdurch kann nicht nur der Beitrag der Synchronisation zur gesamten Messunsicherheit bestimmt sondern auch die von einer Anwendung tatsächlich benötigte Synchronisationsgenauigkeit abgeschätzt werden. Ausgehend von den durch die Unsicherheitsbetrachtung gewonnenen Erkenntnissen werden ein proaktiver und ein reaktiver Ansatz zur synchronen Datenaufnahme entwickelt. Mit dem reaktiven Ansatz können Messdaten auch effizient drehwinkelsynchron, d. h. synchron zur Drehbewegung einer Maschinenwelle, aufgenommen werden. Es werden Testverfahren vorgeschlagen, mit denen sich die Synchronizität der Datenerfassung für ein WSN als Ganzes überprüfen lässt. Diese Verfahren lassen sich unverändert auf andere Messsysteme anwenden und ermöglichen somit direkte Vergleiche. Es wird die praktische Umsetzung eines WSN beschrieben, auf dem die entwickelten Methoden zur Datenerfassung implementiert wurden. Alle Implementierungen wurden mit den vorgeschlagenen Testverfahren untersucht. Hierdurch konnte gezeigt werden, dass die Interrupt-Bearbeitung der Sensorknoten entscheidenden Einfluss auf die Messdatenerfassung hat. Weiter konnte durch den Einsatz von Fixed-Punkt-Arithmetik die drehwinkelsynchrone Datenerfassung in Echtzeit realisiert werden. Schließlich wird die Nützlichkeit der implementierten Datenerfassung an zwei Anwendungen gezeigt: der akustischen Ortung zweier Sensorknoten sowie einer einfachen Ordnungsanalyse.


Fundamentals of Wireless Sensor Networks

Fundamentals of Wireless Sensor Networks

Author: Waltenegus Dargie

Publisher: John Wiley & Sons

Published: 2010-11-05

Total Pages: 308

ISBN-13: 0470975687

DOWNLOAD EBOOK

In this book, the authors describe the fundamental concepts and practical aspects of wireless sensor networks. The book provides a comprehensive view to this rapidly evolving field, including its many novel applications, ranging from protecting civil infrastructure to pervasive health monitoring. Using detailed examples and illustrations, this book provides an inside track on the current state of the technology. The book is divided into three parts. In Part I, several node architectures, applications and operating systems are discussed. In Part II, the basic architectural frameworks, including the key building blocks required for constructing large-scale, energy-efficient sensor networks are presented. In Part III, the challenges and approaches pertaining to local and global management strategies are presented – this includes topics on power management, sensor node localization, time synchronization, and security. At the end of each chapter, the authors provide practical exercises to help students strengthen their grip on the subject. There are more than 200 exercises altogether. Key Features: Offers a comprehensive introduction to the theoretical and practical concepts pertaining to wireless sensor networks Explains the constraints and challenges of wireless sensor network design; and discusses the most promising solutions Provides an in-depth treatment of the most critical technologies for sensor network communications, power management, security, and programming Reviews the latest research results in sensor network design, and demonstrates how the individual components fit together to build complex sensing systems for a variety of application scenarios Includes an accompanying website containing solutions to exercises (http://www.wiley.com/go/dargie_fundamentals) This book serves as an introductory text to the field of wireless sensor networks at both graduate and advanced undergraduate level, but it will also appeal to researchers and practitioners wishing to learn about sensor network technologies and their application areas, including environmental monitoring, protection of civil infrastructure, health care, precision agriculture, traffic control, and homeland security.


Wireless Sensor Networks

Wireless Sensor Networks

Author: Jun Zheng

Publisher: John Wiley & Sons

Published: 2009-09-28

Total Pages: 528

ISBN-13: 0470167637

DOWNLOAD EBOOK

Learn the fundamental concepts, major challenges, and effective solutions in wireless sensor networking This book provides a comprehensive and systematic introduction to the fundamental concepts, major challenges, and effective solutions in wireless sensor networking (WSN). Distinguished from other books, it focuses on the networking aspects of WSNs and covers the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, network security, and sensor network standards. With contributions from internationally renowned researchers, Wireless Sensor Networks expertly strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academic researchers, research engineers, and practitioners in industry. It is also suitable as a textbook or supplementary reading for electrical engineering, computer engineering, and computer science courses at the graduate level.