Time Series Analysis Methods and Applications for Flight Data

Time Series Analysis Methods and Applications for Flight Data

Author: Jianye Zhang

Publisher: Springer

Published: 2016-12-22

Total Pages: 244

ISBN-13: 3662534304

DOWNLOAD EBOOK

This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.


Time-of-Flight Cameras

Time-of-Flight Cameras

Author: Miles Hansard

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 102

ISBN-13: 1447146581

DOWNLOAD EBOOK

Time-of-flight (TOF) cameras provide a depth value at each pixel, from which the 3D structure of the scene can be estimated. This new type of active sensor makes it possible to go beyond traditional 2D image processing, directly to depth-based and 3D scene processing. Many computer vision and graphics applications can benefit from TOF data, including 3D reconstruction, activity and gesture recognition, motion capture and face detection. It is already possible to use multiple TOF cameras, in order to increase the scene coverage, and to combine the depth data with images from several colour cameras. Mixed TOF and colour systems can be used for computational photography, including full 3D scene modelling, as well as for illumination and depth-of-field manipulations. This work is a technical introduction to TOF sensors, from architectural and design issues, to selected image processing and computer vision methods.


Introduction to Time Series Analysis and Forecasting

Introduction to Time Series Analysis and Forecasting

Author: Douglas C. Montgomery

Publisher: John Wiley & Sons

Published: 2015-04-21

Total Pages: 670

ISBN-13: 1118745159

DOWNLOAD EBOOK

Praise for the First Edition "...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.


Time Series Analysis Univariate and Multivariate Methods

Time Series Analysis Univariate and Multivariate Methods

Author: William W. S. Wei

Publisher: Pearson

Published: 2018-03-14

Total Pages: 648

ISBN-13: 9780134995366

DOWNLOAD EBOOK

With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.