Building computers that can be used to design embedded real-time systems is the subject of this title. Real-time embedded software requires increasingly higher performances. The authors therefore consider processors that implement advanced mechanisms such as pipelining, out-of-order execution, branch prediction, cache memories, multi-threading, multicorearchitectures, etc. The authors of this book investigate the timepredictability of such schemes.
Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platformsProgramming modelsMapping and scheduling of parallel computationsTiming and schedulability analysisRuntimes and operating systems The work reflected in this book was done in the scope of the European project P‑SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.
This updated edition offers an indispensable exposition on real-time computing, with particular emphasis on predictable scheduling algorithms. It introduces the fundamental concepts of real-time computing, demonstrates the most significant results in the field, and provides the essential methodologies for designing predictable computing systems used to support time-critical control applications. Along with an in-depth guide to the available approaches for the implementation and analysis of real-time applications, this revised edition contains a close examination of recent developments in real-time systems, including limited preemptive scheduling, resource reservation techniques, overload handling algorithms, and adaptive scheduling techniques. This volume serves as a fundamental advanced-level textbook. Each chapter provides basic concepts, which are followed by algorithms, illustrated with concrete examples, figures and tables. Exercises and solutions are provided to enhance self-study, making this an excellent reference for those interested in real-time computing for designing and/or developing predictable control applications.
This book constitutes the proceedings of the 34th International Conference on Architecture of Computing Systems, ARCS 2021, held virtually in July 2021. The 12 full papers in this volume were carefully reviewed and selected from 24 submissions. 2 workshop papers (VEFRE) are also included. ARCS has always been a conference attracting leading-edge research outcomes in Computer Architecture and Operating Systems, including a wide spectrum of topics ranging from fully integrated, self-powered embedded systems up to high-performance computing systems. It also provides a platform covering newly emerging and cross-cutting topics, such as autonomous and ubiquitous systems, reconfigurable computing and acceleration, neural networks and artificial intelligence. The selected papers cover a variety of topics from the ARCS core domains, including heterogeneous computing, memory optimizations, and organic computing.
This book constitutes the refereed proceedings of 5 workshops co-located with SAFECOMP 2012, the 31st International Conference on Computer Safety, Reliability, and Security, held in Magdeburg, Germany, in September 2012. The 49 revised full papers presented were carefully reviewed and selected from numerous submissions. According to the workshops covered, the papers are organized in topical sections on: next generation of system assurance approaches for safety-critical systems (Sassur), architecting safety in collaborative mobile systems (ASCoMS), dependable and secure computing for large-scale complex critical infrastructures (DESEC4LCCI), ERCIM/EWICS/cyberphysical systems (ERCIM/EWICS), and on digital engineering (IWDE).
This book constitutes the proceedings of the Workshops held in conjunction with SAFECOMP 2020, 39th International Conference on Computer Safety, Reliability and Security, Lisbon, Portugal, September 2020. The 26 regular papers included in this volume were carefully reviewed and selected from 45 submissions; the book also contains one invited paper. The workshops included in this volume are: DECSoS 2020: 15th Workshop on Dependable Smart Embedded and Cyber-Physical Systems and Systems-of-Systems. DepDevOps 2020: First International Workshop on Dependable Development-Operation Continuum Methods for Dependable Cyber-Physical Systems. USDAI 2020: First International Workshop on Underpinnings for Safe Distributed AI. WAISE 2020: Third International Workshop on Artificial Intelligence Safety Engineering. The workshops were held virtually due to the COVID-19 pandemic.
"This book presents the proceedings of the First International Conference on Biologically Inspired Cognitive Architectures (BICA 2010), which is also the First Annual Meeting of the BICA Society. A cognitive architecture is a computational framework for the design of intelligent, even conscious, agents. It may draw inspiration from many sources, such as pure mathematics, physics or abstract theories of cognition. A biologically inspired cognitive architecture (BICA) is one which incorporates formal mechanisms from computational models of human and animal cognition, which currently provide the only physical examples with the robustness, flexibility, scalability and consciousness that artificial intelligence aspires to achieve. The BICA approach has several different goals: the broad aim of creating intelligent software systems without focusing on any one area of application; attempting to accurately simulate human behavior or gain an understanding of how the human mind works, either for purely scientific reasons or for applications in a variety of domains; understanding how the brain works at a neuronal and sub-neuronal level; or designing artificial systems which can perform the cognitive tasks important to practical applications in human society, and which at present only humans are capable of. The papers presented in this volume reflect the cross-disciplinarity and integrative nature of the BICA approach and will be of interest to anyone developing their own approach to cognitive architectures. Many insights can be found here for inspiration or to import into one's own architecture, directly or in modified form."--Publisher description.
This book constitutes the proceedings of the 32nd International Conference on Architecture of Computing Systems, ARCS 2019, held in Copenhagen, Denmark, in May 2019. The 24 full papers presented in this volume were carefully reviewed and selected from 40 submissions. ARCS has always been a conference attracting leading-edge research outcomes in Computer Architecture and Operating Systems, including a wide spectrum of topics ranging from embedded and real-time systems all the way to large-scale and parallel systems. The selected papers are organized in the following topical sections: Dependable systems; real-time systems; special applications; architecture; memory hierarchy; FPGA; energy awareness; NoC/SoC. The chapter 'MEMPower: Data-Aware GPU Memory Power Model' is open access under a CC BY 4.0 license at link.springer.com.
From Model-Driven Design to Resource Management for Distributed Embedded Systems presents 16 original contributions and 12 invited papers presented at the Working Conference on Distributed and Parallel Embedded Systems - DIPES 2006, sponsored by the International Federation for Information Processing - IFIP. Coverage includes model-driven design, testing and evolution of embedded systems, timing analysis and predictability, scheduling, allocation, communication and resource management in distributed real-time systems.