Finite Difference Computing with PDEs

Finite Difference Computing with PDEs

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2017-06-21

Total Pages: 522

ISBN-13: 3319554565

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.


Numerical Heat Transfer and Fluid Flow

Numerical Heat Transfer and Fluid Flow

Author: D. Srinivasacharya

Publisher: Springer

Published: 2018-12-13

Total Pages: 638

ISBN-13: 9811319030

DOWNLOAD EBOOK

This book comprises selected papers from the International Conference on Numerical Heat Transfer and Fluid Flow (NHTFF 2018), and presents the latest developments in computational methods in heat and mass transfer. It also discusses numerical methods such as finite element, finite difference, and finite volume applied to fluid flow problems. Providing a good balance between computational methods and analytical results applied to a wide variety of problems in heat transfer, transport and fluid mechanics, the book is a valuable resource for students and researchers working in the field of heat transfer and fluid dynamics.


Finite Element Methods for Flow Problems

Finite Element Methods for Flow Problems

Author: Jean Donea

Publisher: John Wiley & Sons

Published: 2003-06-02

Total Pages: 366

ISBN-13: 9780471496663

DOWNLOAD EBOOK

Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.


Revival: Numerical Solution Of Convection-Diffusion Problems (1996)

Revival: Numerical Solution Of Convection-Diffusion Problems (1996)

Author: K.W. Morton

Publisher: CRC Press

Published: 2019-02-25

Total Pages: 385

ISBN-13: 1351359673

DOWNLOAD EBOOK

Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.


The Mathematics of Diffusion

The Mathematics of Diffusion

Author: John Crank

Publisher: Oxford University Press

Published: 1979

Total Pages: 428

ISBN-13: 9780198534112

DOWNLOAD EBOOK

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.


Convection-diffusion Problems

Convection-diffusion Problems

Author: Martin Stynes

Publisher:

Published: 2018

Total Pages:

ISBN-13: 9781470450212

DOWNLOAD EBOOK

Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this c.


Fundamentals of Computational Fluid Dynamics

Fundamentals of Computational Fluid Dynamics

Author: H. Lomax

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 256

ISBN-13: 3662046547

DOWNLOAD EBOOK

The chosen semi-discrete approach of a reduction procedure of partial differential equations to ordinary differential equations and finally to difference equations gives the book its distinctiveness and provides a sound basis for a deep understanding of the fundamental concepts in computational fluid dynamics.


Nonlocal Diffusion Problems

Nonlocal Diffusion Problems

Author: Fuensanta Andreu-Vaillo

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 274

ISBN-13: 0821852302

DOWNLOAD EBOOK

Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.


Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems

Author: Remi Abgrall

Publisher: Elsevier

Published: 2017-01-16

Total Pages: 612

ISBN-13: 044463911X

DOWNLOAD EBOOK

Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage