Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Author: Longbiao Li

Publisher:

Published: 2020

Total Pages: 0

ISBN-13: 9789811532757

DOWNLOAD EBOOK

This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines. .


High Temperature Mechanical Behaviour of Ceramic Composites

High Temperature Mechanical Behaviour of Ceramic Composites

Author: Karl Jakus

Publisher: Elsevier

Published: 1995-06-28

Total Pages: 569

ISBN-13: 0080523889

DOWNLOAD EBOOK

High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.


High Temperature Mechanical Behavior of Ceramic-Matrix Composites

High Temperature Mechanical Behavior of Ceramic-Matrix Composites

Author: Longbiao Li

Publisher: John Wiley & Sons

Published: 2021-07-06

Total Pages: 386

ISBN-13: 3527349030

DOWNLOAD EBOOK

High Temperature Mechanical Behavior of Ceramic-Matrix Composites Covers the latest research on the high-temperature mechanical behavior of ceramic-matrix composites Due to their high temperature resistance, strength and rigidity, relatively light weight, and corrosion resistance, ceramic-matrix composites (CMCs) are widely used across the aerospace and energy industries. As these advanced composites of ceramics and various fibers become increasingly important in the development of new materials, understanding the high-temperature mechanical behavior and failure mechanisms of CMCs is essential to ensure the reliability and safety of practical applications. High Temperature Mechanical Behavior of Ceramic-Matrix Composites examines the behavior of CMCs at elevated temperature—outlining the latest developments in the field and presenting the results of recent research on different CMC characteristics, material properties, damage states, and temperatures. This up-to-date resource investigates the high-temperature behavior of CMCs in relation to first matrix cracking, matrix multiple cracking, tensile damage and fracture, fatigue hysteresis loops, stress-rupture, vibration damping, and more. This authoritative volume: Details the relationships between various high-temperature conditions and experiment results Features an introduction to the tensile, vibration, fatigue, and stress-rupture behavior of CMCs at elevated temperatures Investigates temperature- and time-dependent cracking stress, deformation, damage, and fracture of fiber-reinforced CMCs Includes full references and internet links to source material Written by a leading international researcher in the field, High Temperature Mechanical Behavior of Ceramic-Matrix Composites is an invaluable resource for materials scientists, surface chemists, organic chemists, aerospace engineers, and other professionals working with CMCs.


Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Author: Longbiao Li

Publisher: Springer Nature

Published: 2020-04-18

Total Pages: 373

ISBN-13: 9811532745

DOWNLOAD EBOOK

This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.


Microcracking of Ceramic Matrix Composites at Elevated Temperature

Microcracking of Ceramic Matrix Composites at Elevated Temperature

Author:

Publisher:

Published: 1999

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Ceramic matrix composites (CMC) are potentially designed for use in the high temperature environment because of their high strength and noncatastrophic failure characteristics. For ceramics at elevated temperature, the materials exhibit time-dependent deformation. The phenomenon is further accelerated by an increase in the stress or the temperature. Reinforcement by incorporating high-strength fibers is one of the several approaches to significantly improving the creep fracture resistance of the CMC. Experimental studies in mechanical behavior of CMC (1-4) have shown that failure is preceded by matrix cracking at high temperatures. Further, the creeping matrix causes stress transfer from the matrix to the fiber. However, there is a lack of any investigation in understanding of the relation between the matrix cracking at the micro level and the overall mechanical behavior of CMC at elevated temperature. In this research effort, the crack tip fields for a matrix crack are considered. Using generalized expansions at the crack tip in each region and matching the stresses and displacements across the interface in an asymptotic sense, a series asymptotic solution is constructed for the stresses and strain rates near the crack tip. It is found that the stress singularities, to the leading order, are the same in each material, oscillatory higher-order terms exist in both regions, and stress higher-order term with the order of O(r(exp 0)) appears in the elastic material. The stress exponents and the angular distributions for singular terms and higher order terms are obtained for different creep exponents. A full agreement between asymptotic solutions and the full-field finite element solutions has been obtained.


High Temperature Ceramic Matrix Composites

High Temperature Ceramic Matrix Composites

Author: Walter Krenkel

Publisher: Wiley-VCH

Published: 2001

Total Pages: 1044

ISBN-13:

DOWNLOAD EBOOK

The extreme high temperature stability and damage tolerance of materials and components required for space, terrestrial, energetic and many other applications can only be achieved by ceramic materials. All over the world research is going on to develop ceramics with quasiductile behaviour. The materials with the highest potential for high temperature applications are fibre reinforced ceramic matrix composites (CMC). The international conference HT-CMC 4 in Munich will continue the tradition of its successful predecessor meetings held in Bordeaux (France, 1993), Santa Barbara (USA, 1995) and Osaka (Japan, 1998). This conference series has been recognized as the central meeting event in high temperature CMC science and technology and demonstrates the great interest in research and development on reinforced ceramics. The Proceedings of this conference will therefore be a valuable reference for every materials scientist or engineer involved in this field of high-tech materials development.


Vibration Behavior in Ceramic-Matrix Composites

Vibration Behavior in Ceramic-Matrix Composites

Author: Longbiao Li

Publisher: Springer Nature

Published: 2022-11-17

Total Pages: 134

ISBN-13: 9811978387

DOWNLOAD EBOOK

This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.


Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites

Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites

Author: John M. Kennedy

Publisher: ASTM International

Published: 1990

Total Pages: 260

ISBN-13: 0803113854

DOWNLOAD EBOOK

Of interest to researchers and practitioners in materials science, especially in the aerospace industry, 16 papers from a symposium in Atlanta, Georgia, November 1988 discuss the analysis, modeling, and behavior of both continuous and discontinuous ceramic and metal matrix composites, and methods of


Plastic Deformation of Ceramics

Plastic Deformation of Ceramics

Author: R.C. Bradt

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 661

ISBN-13: 1489914412

DOWNLOAD EBOOK

This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.