Time-correlated Single Photon Counting has been written in the hope that by relating the authors' experiences with a variety of different single photon counting systems, they may provide a useful service to users and potential users of this formidably sensitive technique. Of all the techniques available to obtain information on the rates of depopulation of excited electronic singlet states of molecular species, monitoring of fluorescence provides, in principle, the simplest and most direct measure of concentration. This volume comprises eight chapters, with the first focusing on the time dependence and applications of fluorescence. Succeeding chapters go on to discuss basic principles of the single photon counting lifetime measurement; light sources; photomultipliers; electronics; data analysis; nanosecond time-resolved emission spectroscopy; time dependence of fluorescence anisotropy. This book will be of interest to practitioners in the field of chemistry.
In 1984 Desmond O’Connor and David Phillips published their comprehensive book „Time-correlated Single Photon Counting“. At that time time-correlated s- gle photon counting, or TCSPC, was used primarily to record fluorescence decay functions of dye solutions in cuvettes. From the beginning, TCSPC was an am- ingly sensitive and accurate technique with excellent time-resolution. However, acquisition times were relatively slow due to the low repetition rate of the light sources and the limited speed of the electronics of the 70s and early 80s. Moreover, TCSPC was intrinsically one-dimensional, i.e. limited to the recording of the wa- form of a periodic light signal. Even with these limitations, it was a wonderful te- nique. More than 20 years have elapsed, and electronics and laser techniques have made impressive progress. The number of transistors on a single chip has approximately doubled every 18 months, resulting in a more than 1,000-fold increase in compl- ity and speed. The repetition rate and power of pulsed light sources have increased by about the same factor.
This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a “fingerprint” for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.
Photon counting is a unified name for the techniques using single-photon detection for accumulative measurements of the light flux, normally occurring under extremely low-light conditions. Nowadays, this approach can be applied to the wide variety of the radiation wavelengths, starting from X-ray and deep ultraviolet transitions and ending with far-infrared part of the spectrum. As a special tribute to the photon counting, the studies of cosmic microwave background radiation in astronomy, the experiments with muon detection, and the large-scale fundamental experiments on the nature of matter should be noted. The book provides readers with an overview on the fundamentals and state-of-the-art applications of photon counting technique in the applied science and everyday life.
The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.
This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.
This book focuses on the emerging non-invasive imaging technique of Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO). FLIO reveals unique information on retinal diseases, ranging from age-related macular degeneration and vascular diseases to hereditary retinal dystrophies. Fluorescence lifetimes enable the evaluation of disease progression before irreversible structural changes occur. The image acquisition is suitable for diagnostic purposes and follow-up examinations to investigate the natural course of disease, and to monitor the effects of possible therapies. This book fills the gap between available literature and gives state-of-the-art guidance on the principles of the FLIO technique, image acquisition, and data analysis. Written by a team of expert leaders within this field, this book will be relevant for scientists and clinicians with an interest in ophthalmoscopy.
Single-photon generation and detection is at the forefront of modern optical physics research. This book is intended to provide a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared. The use of single photons, produced on demand with well-defined quantum properties, offers an unprecedented set of capabilities that are central to the new area of quantum information and are of revolutionary importance in areas that range from the traditional, such as high sensitivity detection for astronomy, remote sensing, and medical diagnostics, to the exotic, such as secretive surveillance and very long communication links for data transmission on interplanetary missions. The goal of this volume is to provide researchers with a comprehensive overview of the technology and techniques that are available to enable them to better design an experimental plan for its intended purpose. The book will be broken into chapters focused specifically on the development and capabilities of the available detectors and sources to allow a comparative understanding to be developed by the reader along with and idea of how the field is progressing and what can be expected in the near future. Along with this technology, we will include chapters devoted to the applications of this technology, which is in fact much of the driver for its development. This is set to become the go-to reference for this field. - Covers all the basic aspects needed to perform single-photon experiments and serves as the first reference to any newcomer who would like to produce an experimental design that incorporates the latest techniques - Provides a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared, thus giving broad background that should enable newcomers to the field to make rapid progress in gaining proficiency - Written by leading experts in the field, among which, the leading Editor is recognized as having laid down the roadmap, thus providing the reader with an authenticated and reliable source