Rock Mechanics

Rock Mechanics

Author: Jaak J.K. Daemen

Publisher: CRC Press

Published: 1995-01-01

Total Pages: 968

ISBN-13: 9789054105527

DOWNLOAD EBOOK

This volume presents the proceedings of a symposium on rock mechanics, held in the USA in 1995. Topics covered include: rock dynamics; tool-rock interaction; radioactive waste disposal; underground mining; fragmentation and blasting; theoretical and model studies; hydrology; and rock creep.


Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow

Author: National Research Council

Publisher: National Academies Press

Published: 1996-08-27

Total Pages: 568

ISBN-13: 0309049962

DOWNLOAD EBOOK

Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.


XAFS for Everyone

XAFS for Everyone

Author: Scott Calvin

Publisher: CRC Press

Published: 2013-05-20

Total Pages: 442

ISBN-13: 0415684048

DOWNLOAD EBOOK

XAFS for Everyone provides a practical, thorough guide to x-ray absorption fine-structure (XAFS) spectroscopy for both novices and seasoned practitioners from a range of disciplines. The text is enhanced with more than 200 figures as well as cartoon characters who offer informative commentary on the different approaches used in XAFS spectroscopy. The book covers sample preparation, data reduction, tips and tricks for data collection, fingerprinting, linear combination analysis, principal component analysis, and modeling using theoretical standards. It describes both near-edge (XANES) and extended (EXAFS) applications in detail. Examples throughout the text are drawn from diverse areas, including materials science, environmental science, structural biology, catalysis, nanoscience, chemistry, art, and archaeology. In addition, five case studies from the literature demonstrate the use of XAFS principles and analysis in practice. The text includes derivations and sample calculations to foster a deeper comprehension of the results. Whether you are encountering this technique for the first time or looking to hone your craft, this innovative and engaging book gives you insight on implementing XAFS spectroscopy and interpreting XAFS experiments and results. It helps you understand real-world trade-offs and the reasons behind common rules of thumb.


Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Author: Lanru Jing

Publisher: Elsevier

Published: 2007-07-18

Total Pages: 563

ISBN-13: 0080551858

DOWNLOAD EBOOK

This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented. · Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow · Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media · Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models


Application of the 3-D Hydro-Mechanical Model GEOFRAC in Enhanced Geothermal Systems

Application of the 3-D Hydro-Mechanical Model GEOFRAC in Enhanced Geothermal Systems

Author: Alessandra Vecchiarelli

Publisher:

Published: 2013

Total Pages: 171

ISBN-13:

DOWNLOAD EBOOK

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it is based on statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E[A]. Recent developments in GEOFRAC allow the user to calculate the flow in a fractured medium. For this purpose the fractures are modeled as parallel plates and the flow rate can be calculated using the Poisseuille equation. This thesis explores the possibility of the application of GEOFRAC to model a geothermal reservoir. After modeling the fracture flow system of the reservoir, it is possible to obtain the production flow rate. A parametric study was conducted in order to check the sensitivity of the output of the model. An attempt to explain how aperture, width and rotation (orientation distribution) of the fractures influence the resulting flow rate in the production well is presented. GEOFRAC is a structured MATLAB code composed of more than 100 functions. A GUI was created in order to make GEOFRAC more accessible to the users. Future improvements are the keys for a powerful tool that will let GEOFRAC to be used to optimize the location of the injection and production wells in a geothermal system.