The INTERCOH series of conferences bring together the world's leading researchers and practitioners in cohesive sediment transport processes to share recent insights. This book presents papers that examine the spectrum of fine sediment transport related science and engineering, including the basics and applications of flocculation, settling, deposition, and erosion, advanced numerical models used in engineering practice, and applications to mud flats and harbor siltation.
Hardbound. The INTERCOH series of conferences bring together the world's leading researchers and practitioners in cohesive sediment transport processes to share recent insights. This book presents papers that examine the spectrum of fine sediment transport related science and engineering, including the basics and applications of flocculation, settling, deposition, and erosion, advanced numerical models used in engineering practice, and applications to mud flats and harbor siltation.
Sediment Transport Processes and their Modelling Applications is a book which covers a wide range of topics. The effective management of many aquatic environments, requires a detailed understanding of sediment dynamics. This has both environmental and economic implications, especially where there is any anthropogenic involvement. Numerical models are often the tool used for predicting the transport and fate of sediment movement in these situations, as they can estimate the various spatial and temporal fluxes. However, the physical sedimentary processes can vary quite considerably depending upon whether the local sediments are fully cohesive, non-cohesive, or a mixture of both types. For this reason for more than half a century, scientists, engineers, hydrologists and mathematicians have all been continuing to conduct research into the many aspects which influence sediment transport. These issues range from processes such as scour, erosion and deposition, to how sediment process observations can be applied in sediment transport modelling frameworks. This book reports the findings from recent research in applied sediment transport which has been conducted in a wide range of aquatic environments. The research was carried out by researchers who specialise in the transport of sediments and related issues.
These proceedings contain papers by some of the world's leading experts in the analytical and numerical modelling of sediment transport, its measurement on site and in the laboratory, river and coastal morphology, and similar issues. These topics are of fundamental importance in many areas (such as the silting or erosion of coasts and rivers, and the design of fluvial or coastal structures) and should consequently be of interest to a wide audience in engineering, geology and related disciplines.
Cohesive sediment, or mud, is encountered in most water bodies throughout the world. Often mud is a valuable resource, synonymous with fertile land, enriching the natural environment and used as an important building material. Yet mud also hinders navigation and consequently, dredging operations have been carried out since ancient times to safeguard navigation. Unfortunately, many mud deposits are now contaminated, endangering the eco-system and increasing the costs of dredging operations. The transport and fate of mud in the environment are still poorly understood and the need for basic research remains. This text contains the proceedings of the INTERCOH-2000 conference on progress in cohesive sediment research. It was the sixth in a series of conferences initially started by Professor Ashish Mehta in 1984 as a "Workshop on Cohesive Sediment Dynamics with Special Reference to the Processes in Estuaries". During these conferences the character of the first workshop has always been maintained, that is, small scale and dedicated to the physical and engineering aspects of cohesive sediments, without parallel sessions, but with ample time for discussions during and after the presentations, and followed by a book of proceedings containing thoroughly reviewed papers. INTERCOH-2000 was integrated with the final workshop of the COSINUS project. This project was carried out as a part of the European MAST-3 programme, and almost all European cohesive sediment workers were involved. INTERCOH-2000 focused on the behaviour and modelling of concentrated benthic suspensions, i.e. high-concentrated near-bed suspensions of cohesive sediment. Special attention was paid to: sediment - turbulence interaction; flocculation and settling velocity; high-concentrated mud suspensions; processes in the bed - consolidation; processes on the bed - erosion; field observations on mud dynamics; instrumentation; and numerical modelling.
Computers are widely used for the analysis, design, and operation of water resource projects. This gives accurate results, allowing the analysis of complex systems which may not have been possible otherwise, and the investigation and comparison of several different alternatives in a short time, thereby reducing the project costs, optimizing design, and efficient utilization of resources. This volume compiles an edited version of the lecture notes specially prepared by 14 well-known European and North American researchers. Part I deals with free-surface flows. Governing equations are derived and their solution by the finite-difference, finite-element, and boundary-integral methods are discussed. Then, turbulence models, three-dimensional models, dam-break flow models, sediment transport models, and flood routing models are presented. Part II is related to the modeling of steady and transient pressurized flows. Governing equations for both single and two-component flows are derived and numerical methods for their solution are presented. The modeling of water quality in pipe networks, of cooling water systems, and slow and rapid transients is then discussed.
These proceedings contain papers by some of the world's leading experts in the analytical and numerical modelling of sediment transport, its measurement on site and in the laboratory, river and coastal morphology, and similar issues. These topics are of fundamental importance in many areas (such as the silting or erosion of coasts and rivers, and the design of fluvial or coastal structures) and should consequently be of interest to a wide audience in engineering, geology and related disciplines.
A practical guide to the latest remote and in situ techniques used to measure sediments, quantify seabed characteristics, and understand physical properties of water and sediments and transport mechanisms in estuaries and coastal waters. Covering a broad range of topics from global reference frames and bathymetric surveying methods to the use of remote sensing for determining surface-water variables, enough background is included to explain how each technology functions. The advantages and disadvantages of each technology are explained, and a review of recent fieldwork experiments demonstrates how modern methods apply in real-life estuarine and coastal campaigns. Clear explanations of physical processes show links between different disciplines, making the book ideal for students and researchers in the environmental sciences, marine biology, chemistry and geology, whose work relies on an understanding of the physical environment and the way it is changing as a result of climate change, engineering and other influences.