Geometric Topology in Dimensions 2 and 3

Geometric Topology in Dimensions 2 and 3

Author: E.E. Moise

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 272

ISBN-13: 1461299063

DOWNLOAD EBOOK

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.


Three-dimensional Geometry and Topology

Three-dimensional Geometry and Topology

Author: William P. Thurston

Publisher: Princeton University Press

Published: 1997

Total Pages: 340

ISBN-13: 9780691083049

DOWNLOAD EBOOK

Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.


The Geometry and Topology of Three-Manifolds

The Geometry and Topology of Three-Manifolds

Author: William P. Thurston

Publisher: American Mathematical Society

Published: 2023-06-16

Total Pages: 337

ISBN-13: 1470474743

DOWNLOAD EBOOK

William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.


Low-Dimensional Geometry

Low-Dimensional Geometry

Author: Francis Bonahon

Publisher: American Mathematical Soc.

Published: 2009-07-14

Total Pages: 403

ISBN-13: 082184816X

DOWNLOAD EBOOK

The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.


From Chemical Topology to Three-Dimensional Geometry

From Chemical Topology to Three-Dimensional Geometry

Author: Alexandru T. Balaban

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 436

ISBN-13: 0306469073

DOWNLOAD EBOOK

Even high-speed supercomputers cannot easily convert traditional two-dimensional databases from chemical topology into the three-dimensional ones demanded by today's chemists, particularly those working in drug design. This fascinating volume resolves this problem by positing mathematical and topological models which greatly expand the capabilities of chemical graph theory. The authors examine QSAR and molecular similarity studies, the relationship between the sequence of amino acids and the less familiar secondary and tertiary protein structures, and new topological methods.


Introduction to 3-Manifolds

Introduction to 3-Manifolds

Author: Jennifer Schultens

Publisher: American Mathematical Soc.

Published: 2014-05-21

Total Pages: 298

ISBN-13: 1470410206

DOWNLOAD EBOOK

This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.


Geometry In Our Three-dimensional World

Geometry In Our Three-dimensional World

Author: Alfred S Posamentier

Publisher: World Scientific

Published: 2021-11-24

Total Pages: 441

ISBN-13: 9811237123

DOWNLOAD EBOOK

The book presents a comprehensive overview of various aspects of three-dimensional geometry that can be experienced on a daily basis. By covering the wide range of topics — from the psychology of spatial perception to the principles of 3D modelling and printing, from the invention of perspective by Renaissance artists to the art of Origami, from polyhedral shapes to the theory of knots, from patterns in space to the problem of optimal packing, and from the problems of cartography to the geometry of solar and lunar eclipses — this book provides deep insight into phenomena related to the geometry of space and exposes incredible nuances that can enrich our lives.The book is aimed at the general readership and provides more than 420 color illustrations that support the explanations and replace formal mathematical arguments with clear graphical representations.


Isosurfaces

Isosurfaces

Author: Rephael Wenger

Publisher: CRC Press

Published: 2013-06-24

Total Pages: 484

ISBN-13: 1466571020

DOWNLOAD EBOOK

Ever since Lorensen and Cline published their paper on the Marching Cubes algorithm, isosurfaces have been a standard technique for the visualization of 3D volumetric data. Yet there is no book exclusively devoted to isosurfaces. Isosurfaces: Geometry, Topology, and Algorithms represents the first book to focus on basic algorithms for isosurface co


The Geometry and Topology of Coxeter Groups

The Geometry and Topology of Coxeter Groups

Author: Michael Davis

Publisher: Princeton University Press

Published: 2008

Total Pages: 601

ISBN-13: 0691131384

DOWNLOAD EBOOK

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.


Analysis On Manifolds

Analysis On Manifolds

Author: James R. Munkres

Publisher: CRC Press

Published: 2018-02-19

Total Pages: 296

ISBN-13: 0429973772

DOWNLOAD EBOOK

A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.