Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12

Author: Peter Liljedahl

Publisher: Corwin Press

Published: 2020-09-28

Total Pages: 454

ISBN-13: 1544374844

DOWNLOAD EBOOK

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.


How Not to Be Wrong

How Not to Be Wrong

Author: Jordan Ellenberg

Publisher: Penguin Press

Published: 2014-05-29

Total Pages: 480

ISBN-13: 1594205221

DOWNLOAD EBOOK

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.


Introduction to Mathematical Thinking

Introduction to Mathematical Thinking

Author: Keith J. Devlin

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9780615653631

DOWNLOAD EBOOK

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.


Teaching for Thinking

Teaching for Thinking

Author: Grace Kelemanik

Publisher:

Published: 2022-01-24

Total Pages: 184

ISBN-13: 9780325120072

DOWNLOAD EBOOK

Teaching our children to think and reason mathematically is a challenge, not because students can't learn to think mathematically, but because we must change our own often deeply-rooted teaching habits. This is where instructional routines come in. Their predictable design and repeatable nature support both teachers and students to develop new habits. In Teaching for Thinking, Grace Kelemanik and Amy Lucenta pick up where their first book, Routines for Reasoning, left off. They draw on their years of experience in the classroom and as instructional coaches to examine how educators can make use of routines to make three fundamental shifts in teaching practice: Focus on thinking: Shift attention away from students' answers and toward their thinking and reasoning Step out of the middle: Shift the balance from teacher-student interactions toward student-student interactions Support productive struggle: Help students do the hard thinking work that leads to real learning With three complete new routines, support for designing your own routine, and ideas for using routines in your professional learning as well as in your classroom teaching, Teaching for Thinking will help you build new teaching habits that will support all your students to become and see themselves as capable mathematicians.


The Heart of Mathematics

The Heart of Mathematics

Author: Edward B. Burger

Publisher: Springer Science & Business Media

Published: 2004-08-18

Total Pages: 798

ISBN-13: 9781931914413

DOWNLOAD EBOOK

Hallmark features include: * A focus on the important ideas of mathematics that students will retain long after their formal studies are complete. * An engaging and humorous style, written to be read and enjoyed. * Ten Life Lessons that readers will apply beyond their study of mathematics. * Use of a variety of visualization techniques that direct students to model their thinking and to actively explore the world around them. New to this Edition: * A new chapter, Deciding Wisely: Applications of Rigorous Thought, provides a thought-provoking capstone. * Expanded and improved statistics and probability content in Chapter 7, Taming Uncertainty. * Enhanced Mindscapes at the end of each section which ask the reader to review, apply and think deeply about the ideas presented in the chapter. * Radically superior ancillary package.


Teaching Mathematics Through Problem-Solving

Teaching Mathematics Through Problem-Solving

Author: Akihiko Takahashi

Publisher: Routledge

Published: 2021-03-31

Total Pages: 159

ISBN-13: 1000359867

DOWNLOAD EBOOK

This engaging book offers an in-depth introduction to teaching mathematics through problem-solving, providing lessons and techniques that can be used in classrooms for both primary and lower secondary grades. Based on the innovative and successful Japanese approaches of Teaching Through Problem-solving (TTP) and Collaborative Lesson Research (CLR), renowned mathematics education scholar Akihiko Takahashi demonstrates how these teaching methods can be successfully adapted in schools outside of Japan. TTP encourages students to try and solve a problem independently, rather than relying on the format of lectures and walkthroughs provided in classrooms across the world. Teaching Mathematics Through Problem-Solving gives educators the tools to restructure their lesson and curriculum design to make creative and adaptive problem-solving the main way students learn new procedures. Takahashi showcases TTP lessons for elementary and secondary classrooms, showing how teachers can create their own TTP lessons and units using techniques adapted from Japanese educators through CLR. Examples are discussed in relation to the Common Core State Standards, though the methods and lessons offered can be used in any country. Teaching Mathematics Through Problem-Solving offers an innovative new approach to teaching mathematics written by a leading expert in Japanese mathematics education, suitable for pre-service and in-service primary and secondary math educators.


Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12

Author: John Hattie

Publisher: Corwin Press

Published: 2016-09-15

Total Pages: 209

ISBN-13: 1506362958

DOWNLOAD EBOOK

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.


Distilling Ideas

Distilling Ideas

Author: Brian P. Katz

Publisher: MAA

Published: 2013

Total Pages: 189

ISBN-13: 1939512034

DOWNLOAD EBOOK

Introduction -- Graphs -- Groups -- Calculus -- Conclusion.


Teaching Numeracy

Teaching Numeracy

Author: Margie Pearse

Publisher: Corwin Press

Published: 2011-03-23

Total Pages: 241

ISBN-13: 1452224404

DOWNLOAD EBOOK

Transform mathematics learning from “doing” to “thinking” American students are losing ground in the global mathematical environment. What many of them lack is numeracy—the ability to think through the math and apply it outside of the classroom. Referencing the new common core and NCTM standards, the authors outline nine critical thinking habits that foster numeracy and show you how to: Monitor and repair students’ understanding Guide students to recognize patterns Encourage questioning for understanding Develop students’ mathematics vocabulary Included are several numeracy-rich lesson plans, complete with clear directions and student handouts.


Mathematical Thinking and Problem Solving

Mathematical Thinking and Problem Solving

Author: Alan H. Schoenfeld

Publisher: Routledge

Published: 2016-05-06

Total Pages: 303

ISBN-13: 113544093X

DOWNLOAD EBOOK

In the early 1980s there was virtually no serious communication among the various groups that contribute to mathematics education -- mathematicians, mathematics educators, classroom teachers, and cognitive scientists. Members of these groups came from different traditions, had different perspectives, and rarely gathered in the same place to discuss issues of common interest. Part of the problem was that there was no common ground for the discussions -- given the disparate traditions and perspectives. As one way of addressing this problem, the Sloan Foundation funded two conferences in the mid-1980s, bringing together members of the different communities in a ground clearing effort, designed to establish a base for communication. In those conferences, interdisciplinary teams reviewed major topic areas and put together distillations of what was known about them.* A more recent conference -- upon which this volume is based -- offered a forum in which various people involved in education reform would present their work, and members of the broad communities gathered would comment on it. The focus was primarily on college mathematics, informed by developments in K-12 mathematics. The main issues of the conference were mathematical thinking and problem solving.