Thinking Geometrically

Thinking Geometrically

Author: Thomas Q. Sibley

Publisher: The Mathematical Association of America

Published: 2015-08-14

Total Pages: 586

ISBN-13: 1939512085

DOWNLOAD EBOOK

Thinking Geometrically: A Survey of Geometries is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure, historical development, and deep interconnectedness of the ideas. Students with less mathematical preparation than upper-division mathematics majors can successfully study the topics needed for the preparation of high school teachers. There is a multitude of exercises and projects in those chapters developing all aspects of geometric thinking for these students as well as for more advanced students. These chapters include Euclidean Geometry, Axiomatic Systems and Models, Analytic Geometry, Transformational Geometry, and Symmetry. Topics in the other chapters, including Non-Euclidean Geometry, Projective Geometry, Finite Geometry, Differential Geometry, and Discrete Geometry, provide a broader view of geometry. The different chapters are as independent as possible, while the text still manages to highlight the many connections between topics. The text is self-contained, including appendices with the material in Euclid’s first book and a high school axiomatic system as well as Hilbert’s axioms. Appendices give brief summaries of the parts of linear algebra and multivariable calculus needed for certain chapters. While some chapters use the language of groups, no prior experience with abstract algebra is presumed. The text will support an approach emphasizing dynamical geometry software without being tied to any particular software.


Developing Thinking in Geometry

Developing Thinking in Geometry

Author: Sue Johnston-Wilder

Publisher: Paul Chapman Educational Publishing

Published: 2005-09-14

Total Pages: 300

ISBN-13: 9781412911696

DOWNLOAD EBOOK

"All readers can use this book to reignite their fascination with mathematics. Fosters not only a curiosity about geometry itself but crucially focuses on how learners can actively engage in thinking about geometry and its central key ideas."-Sylvia Johnson, Professor, Sheffield Hallam University"Exudes activity and interactivity. A book for learning geometry, learning to think more deeply about geometry, and also about its teaching and learning."-David Pimm, Professor, University of AlbertaDeveloping Thinking in Geometry enables teachers and their support staff to experience and teach geometric thinking. Discussing key teaching principles, the book and its accompanying interactive CD-ROM include many activities encouraging readers to extend their own learning, and teaching practices.Drawing on innovative approaches for teaching and learning geometry developed by the Open University's Centre for Mathematics Education, this resource is constructed around the following key themes:InvarianceLanguage and points of viewReasoning using invarianceVisualizing and representing


Developing Thinking in Algebra

Developing Thinking in Algebra

Author: John Mason

Publisher: Paul Chapman Educational Publishing

Published: 2005-04-23

Total Pages: 342

ISBN-13: 9781412911719

DOWNLOAD EBOOK

'Mason, Graham, and Johnston-Wilder have admirably succeeded in casting most of school algebra in terms of generalisation activity? not just the typical numerical and geometric pattern-based work, but also solving quadratics and simultaneous equations, graphing equations, and factoring. The authors raise our awareness of the scope of generalization and of the power of using this as a lens not just for algebra but for all of mathematics!' - Professor Carolyn Kieran, Departement de Mathematiques, Universite du Quebec a Montreal Algebra has always been a watershed for pupils learning mathematics. This book will enable you to think about yourself as a learner of algebra in a new way, and thus to teach algebra more successfully, overcoming difficulties and building upon skills that all learners have. This book is based on teaching principles developed by the team at The Open University's Centre for Mathematics Education which has a 20-year track record of innovative approaches to teaching and learning algebra. Written for teachers working with pupils aged 7-16, it includes numerous tasks ready for adaption for your teaching and discusses principles that teachers have found useful in preparing and conducting lessons. This is a 'must have' resource for all teachers of mathematics, primary or secondary, and their support staff. Anyone who wishes to create an understanding and enthusiasm for algebra, based upon firm research and effective practice, will enjoy this book. This book is the course reader for The Open University Course ME625 Developing Algebraic Thinking


Thinking Geometrically

Thinking Geometrically

Author: John T. Waisanen

Publisher: Peter Lang Incorporated, International Academic Publishers

Published: 2002

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK

What skills do we need to negotiate the changing technological circumstances of our lives? How should we respond to the changing space of the visual, the technological? We are bombarded with answers to these questions: by media, by government, and by education. For the most part we are told that what we need to do is utilize the latest technologies and develop the newest skills (computer literacy prominent among them). Here, with keen interdisciplinary insight, historical sensitivity, and corporate design experience, John T. Waisanen offers a different kind of argument. He looks to particular skills we might be losing (and might have for some time been losing): drawing in particular; and to the «art» of integrating complex vision, thought and practice, what he calls design - or geometrical thinking. This points to the importance of the arts as a physical practice and to the cultivation of complex vision and thought gained in and through an education where geometry and literature are equally important, where physical intelligence (not just dexterity) and philosophical intelligence are equally important.


Discourse Perspective of Geometric Thoughts

Discourse Perspective of Geometric Thoughts

Author: Sasha Wang

Publisher: Springer

Published: 2016-03-22

Total Pages: 248

ISBN-13: 3658128054

DOWNLOAD EBOOK

Sasha Wang revisits the van Hiele model of geometric thinking with Sfard’s discursive framework to investigate geometric thinking from a discourse perspective. The author focuses on describing and analyzing pre-service teachers’ geometric discourse across different van Hiele levels. The explanatory power of Sfard’s framework provides a rich description of how pre-service teachers think in the context of quadrilaterals. It also contributes to our understanding of human thinking that is illustrated through the analysis of geometric discourse accompanied by vignettes.


Conceptual Spaces

Conceptual Spaces

Author: Peter Gardenfors

Publisher: MIT Press

Published: 2004-01-30

Total Pages: 324

ISBN-13: 9780262572194

DOWNLOAD EBOOK

Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.


Shape

Shape

Author: Jordan Ellenberg

Publisher: Penguin

Published: 2021-05-25

Total Pages: 481

ISBN-13: 1984879065

DOWNLOAD EBOOK

An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.


New Foundations for Physical Geometry

New Foundations for Physical Geometry

Author: Tim Maudlin

Publisher:

Published: 2014-02

Total Pages: 374

ISBN-13: 0198701306

DOWNLOAD EBOOK

Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.


Visual Differential Geometry and Forms

Visual Differential Geometry and Forms

Author: Tristan Needham

Publisher: Princeton University Press

Published: 2021-07-13

Total Pages: 530

ISBN-13: 0691203709

DOWNLOAD EBOOK

An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.