Thermodynamics of the Steam Turbine
Author: Cecil Hobart Peabody
Publisher:
Published: 1911
Total Pages: 336
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Cecil Hobart Peabody
Publisher:
Published: 1911
Total Pages: 336
ISBN-13:
DOWNLOAD EBOOKAuthor: William P. Sanders
Publisher:
Published:
Total Pages:
ISBN-13: 9781628702903
DOWNLOAD EBOOKAuthor: S. Can Gülen
Publisher: Cambridge University Press
Published: 2019-02-14
Total Pages: 735
ISBN-13: 1108416659
DOWNLOAD EBOOKEverything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Author: Aurel Stodola
Publisher:
Published: 1905
Total Pages: 528
ISBN-13:
DOWNLOAD EBOOKAuthor: Rolf Kehlhofer
Publisher: PennWell Books
Published: 1999
Total Pages: 328
ISBN-13:
DOWNLOAD EBOOKThis title provides a reference on technical and economic factors of combined-cycle applications within the utility and cogeneration markets. Kehlhofer - and hos co-authors give the reader tips on system layout, details on controls and automation, and operating instructions.
Author: Everett B. Woodruff
Publisher: McGraw Hill Professional
Published: 2016-11-04
Total Pages: 750
ISBN-13: 1259641341
DOWNLOAD EBOOKThe definitive reference on the role of steam in the production and operation of power plants for electric generation and industrial process applications For more than 80 years, Steam Plant Operation has been an unmatched source of information on steam power plants, including design, operation, and maintenance. The Tenth Edition emphasizes the importance of devising a comprehensive energy plan utilizing all economical sources of energy, including fossil fuels, nuclear power, and renewable energy sources. This trusted classic discusses the important role that steam plays in our power production and identifies the associated risks and potential problems of other energy sources. You will find concise explanations of key concepts, from fundamentals through design and operation. For energy students, Steam Plant Operation provides a solid introduction to steam power plant technology. This practical guide includes common power plant calculations such as plant heat rate, boiler efficiency, pump performance, combustion processes, and explains the systems necessary to control plant emissions. Numerous illustrations and clear presentation of the material will prove invaluable for those preparing for an operator’s license exam. Examples throughout show real-world application of the topics discussed. COVERAGE INCLUDES: • Steam and Its Importance • Boilers • Design and Construction of Boilers • Combustion of Fuels • Boiler Settings, Combustion Systems, and Auxiliary Equipment • Boiler Accessories • Operation and Maintenance of Boilers • Pumps • Steam Turbines, Condensers, and Cooling Towers • Operating and Maintaining Steam Turbines, Condensers, Cooling Towers, and Auxiliaries • Auxiliary Steam Plant Equipment • Environmental Control Systems • Waste-to-Energy Plants
Author: Tadashi Tanuma
Publisher: Woodhead Publishing
Published: 2017-02-15
Total Pages: 569
ISBN-13: 0081003250
DOWNLOAD EBOOKAdvances in Steam Turbines for Modern Power Plants provides an authoritative review of steam turbine design optimization, analysis and measurement, the development of steam turbine blades, and other critical components, including turbine retrofitting and steam turbines for renewable power plants. As a very large proportion of the world's electricity is currently generated in systems driven by steam turbines, (and will most likely remain the case in the future) with steam turbines operating in fossil-fuel, cogeneration, combined cycle, integrated gasification combined cycle, geothermal, solar thermal, and nuclear plants across the world, this book provides a comprehensive assessment of the research and work that has been completed over the past decades. - Presents an in-depth review on steam turbine design optimization, analysis, and measurement - Written by a range of experts in the area - Provides an overview of turbine retrofitting and advanced applications in power generation
Author: J.H. Horlock
Publisher: Elsevier
Published: 2013-10-22
Total Pages: 225
ISBN-13: 0080545564
DOWNLOAD EBOOKPrimarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple "open circuit" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be disposed of; the implications of a carbon tax on electricity pricing are considered. In presenting this wide survey of gas turbine cycles for power generation the author calls on both his academic experience (at Cambridge and Liverpool Universities, the Gas Turbine Laboratory at MIT and Penn State University) and his industrial work (primarily with Rolls Royce, plc.) The book will be essential reading for final year and masters students in mechanical engineering, and for practising engineers.
Author: David Gordon Wilson
Publisher: MIT Press
Published: 2014-09-12
Total Pages: 625
ISBN-13: 0262526689
DOWNLOAD EBOOKThe second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.
Author: Ashok D Rao
Publisher: Elsevier
Published: 2012-04-12
Total Pages: 357
ISBN-13: 0857096184
DOWNLOAD EBOOKCombined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants.After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems.With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. - Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants - Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems - Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems