Thermitic Thermodynamics

Thermitic Thermodynamics

Author: Anthony Peter Gordon Shaw

Publisher: CRC Press

Published: 2020-05-13

Total Pages: 1579

ISBN-13: 1351056603

DOWNLOAD EBOOK

Thermites, which are generally considered to be reactive mixtures of powdered metals and metal oxides, are an important subset of energetic materials. The underlying thermodynamic properties of a given mixture dictate whether it may undergo a self-sustaining reaction, liberating heat in the process. Thermodynamic information in the existing scientific literature regarding thermitic combinations is scattered and incomplete. Currently, a comprehensive overview of this nature would be of great use to those working in the areas of pyrotechnics, pyrometallurgy, high-temperature chemistry, and materials science. Thermitic Thermodynamics solves this problem by describing the results of calculations on over 800 combinations of metal, metalloid, and metal oxide reactants. Other features include: A first-of-its-kind adiabatic survey of binary thermitic reactions Provides an overview of key trends in exothermic metal-metal oxide reactivity Describes the role of non-oxide product formation in thermitic systems Explains how to interpret the results of thermochemical calculations effectively An invaluable resource, this book provides an accessible introduction for students and is also an enduring guide for professionals.


The Oxide Handbook

The Oxide Handbook

Author: G. V. Samsonov

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 534

ISBN-13: 1461595975

DOWNLOAD EBOOK

The continuous and ever expanding development of high-temperature tech nology involves the use of high -temperature refractory materials and one of the most important classes of these is the oxides, i.e., compounds of elements with oxygen. Oxides are the oldest refractory compounds known in technology and this is connected with their high chemical stability and abundance in nature. In addition to the use of oxides as raw materials for metallurgical processes, the refractoriness, chemical stability, and magnetic and other technically important properties of oxides have been put to use since antiquity. At the present time the importance of oxides as bases of many materials for new technology is substantial and is growing rapidly with the development of processes for the direct conversion of various forms of energy into electrical energy, the development of nuclear technOlogy, electronics, semiconductor and dielectric technOlogy, and cosmic technology, where the refractoriness and chemical stability of oxides are used in combination with their specific physical properties. Oxides are the foundation of the so-called oxygen -containing or oxygen refractory materials, which are fundamental to high-temperature tech nology. Oxides are no less important as the bases of practically all structural ma terials and rocks. A number of oxides are involved in biological processes.