Introduction to Thermoelectricity

Introduction to Thermoelectricity

Author: H. Julian Goldsmid

Publisher: Springer Science & Business Media

Published: 2009-10-03

Total Pages: 250

ISBN-13: 3642007163

DOWNLOAD EBOOK

Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.


Thermionics Quo Vadis?

Thermionics Quo Vadis?

Author: National Research Council

Publisher: National Academies Press

Published: 2001-12-18

Total Pages: 85

ISBN-13: 0309086868

DOWNLOAD EBOOK

This report evaluates the Defense Threat Reduction Agency prior and present sponsored efforts; assess the present state of the art in thermionic energy conversion systems; assess the technical challenges to the development of viable thermionic energy conversion systems for both space and terrestrial applications; and recommend a prioritized set of objectives for a future research and development program for advanced thermionic systems for space and terrestrial applications.


Thermal Nanosystems and Nanomaterials

Thermal Nanosystems and Nanomaterials

Author: Sebastian Volz

Publisher: Springer Science & Business Media

Published: 2009-12-24

Total Pages: 597

ISBN-13: 3642042589

DOWNLOAD EBOOK

Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.


Thermoelectrics

Thermoelectrics

Author: G.S. Nolas

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 296

ISBN-13: 3662045699

DOWNLOAD EBOOK

An in-depth analysis of thermoelectric theory, an overview of present day thermoelectric materials and devices, and updated information on the most studied thermoelectric materials development. The main emphasis is on a basic understanding of the concepts as well as experimental techniques needed to propel researchers towards new and novel classes of thermoelectric materials with enhanced properties.


Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion

Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion

Author: Alejandro Datas

Publisher: Woodhead Publishing

Published: 2020-09-01

Total Pages: 370

ISBN-13: 0128204214

DOWNLOAD EBOOK

Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800°C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions.This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion.This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. - Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices - Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments - Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials


Direct Energy Conversion Technologies

Direct Energy Conversion Technologies

Author: R. K. Singal

Publisher: Mercury Learning and Information

Published: 2019-10-24

Total Pages: 281

ISBN-13: 168392455X

DOWNLOAD EBOOK

This book is designed for students and professionals who specialize in energy technologies and power plant engineering. It covers the mathematics and physics of both current conversion, such as solar cells, fuel cells, MHD, thermoelectric, and thermionic power generation, but also discusses emerging conversion technologies such as solar thermal, nuclear fusion, and hydrogen energy. Features: Covers both current conversion technologies as well as emerging technologies, such as solar thermal, nuclear fusion, and hydrogen energy Written in simple language, illustrated by diagrams, mathematical analysis, and numerical examples