Thermal Flows in Porous Media

Thermal Flows in Porous Media

Author: H.I. Ene

Publisher: Springer

Published: 2011-10-01

Total Pages: 194

ISBN-13: 9789401081641

DOWNLOAD EBOOK

The transport of heat through a porous medium in the presence of exterior forces, generally produced by the Earth's gravitational field and/or a pressure gradient, is called conduction when the Darcean fluid is static (motionless), and convection when the Darcean fluid is in motion. It is customary to use the term convection also to describe the motion which arises from the density differences due to temperature gradients within the Darcean fluid. We think that because this last phenomenon is more general it should be given a specific name; here we call it thermal flow. In the sense of the above definitions, convection and thermal flow are two distinct phenomena (they occur together, in underground combustion for instance), and the convective motion which arises when a Darcean l'luid is in contact with a source of heat is a particular case of thermal flow. Thermal flow occurs naturally and is important in many geophysical and industrial problems, particularly in oil exploration, and in the petroleum, chemical and nuclear industries (for instance, in the evaluation of capability of heat-removal from a hypothetical accident in a nuclear reactor). It can play a part in the transfer of heat from the deep interior of the Earth to a shallow depth in the geothermal regions. However, in the field of energy conversion little attention has yet been paid to the insulating characteristics of the saturated porous materials introduced in some enclosures (storage tanks) to decrease the convective and radiative transfer of heat.


Principles of Heat Transfer in Porous Media

Principles of Heat Transfer in Porous Media

Author: M. Kaviany

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 636

ISBN-13: 1468404121

DOWNLOAD EBOOK

Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.


Transport Phenomena in Porous Media III

Transport Phenomena in Porous Media III

Author: Derek B Ingham

Publisher: Elsevier

Published: 2005-07-29

Total Pages: 503

ISBN-13: 0080543189

DOWNLOAD EBOOK

Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.


Convective Heat Transfer in Porous Media

Convective Heat Transfer in Porous Media

Author: Yasser Mahmoudi

Publisher: CRC Press

Published: 2019-11-06

Total Pages: 366

ISBN-13: 0429670559

DOWNLOAD EBOOK

Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.


Fluid Flow and Heat Transfer in Rotating Porous Media

Fluid Flow and Heat Transfer in Rotating Porous Media

Author: Peter Vadasz

Publisher: Springer

Published: 2015-07-28

Total Pages: 85

ISBN-13: 3319200569

DOWNLOAD EBOOK

This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.


Transport Phenomena in Porous Media II

Transport Phenomena in Porous Media II

Author: I. Pop

Publisher: Elsevier

Published: 2002-06-20

Total Pages: 469

ISBN-13: 0080543170

DOWNLOAD EBOOK

Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.


Thermal Flows in Porous Media

Thermal Flows in Porous Media

Author: H.I. Ene

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 200

ISBN-13: 9400937172

DOWNLOAD EBOOK

The transport of heat through a porous medium in the presence of exterior forces, generally produced by the Earth's gravitational field and/or a pressure gradient, is called conduction when the Darcean fluid is static (motionless), and convection when the Darcean fluid is in motion. It is customary to use the term convection also to describe the motion which arises from the density differences due to temperature gradients within the Darcean fluid. We think that because this last phenomenon is more general it should be given a specific name; here we call it thermal flow. In the sense of the above definitions, convection and thermal flow are two distinct phenomena (they occur together, in underground combustion for instance), and the convective motion which arises when a Darcean l'luid is in contact with a source of heat is a particular case of thermal flow. Thermal flow occurs naturally and is important in many geophysical and industrial problems, particularly in oil exploration, and in the petroleum, chemical and nuclear industries (for instance, in the evaluation of capability of heat-removal from a hypothetical accident in a nuclear reactor). It can play a part in the transfer of heat from the deep interior of the Earth to a shallow depth in the geothermal regions. However, in the field of energy conversion little attention has yet been paid to the insulating characteristics of the saturated porous materials introduced in some enclosures (storage tanks) to decrease the convective and radiative transfer of heat.


Convection in Porous Media

Convection in Porous Media

Author: D.A. Nield

Publisher: Springer Science & Business Media

Published: 2006-12-06

Total Pages: 655

ISBN-13: 0387334319

DOWNLOAD EBOOK

This new edition includes nearly 1000 new references.


Numerical Analysis of Heat and Mass Transfer in Porous Media

Numerical Analysis of Heat and Mass Transfer in Porous Media

Author: J.M.P.Q. Delgado

Publisher: Springer Science & Business Media

Published: 2012-06-25

Total Pages: 317

ISBN-13: 3642305326

DOWNLOAD EBOOK

The purpose of ‘Numerical Analysis of Heat and Mass Transfer in Porous Media’ is to provide a collection of recent contributions in the field of computational heat and mass transfer in porous media. The main benefit of the book is that it discusses the majority of the topics related to numerical transport phenomenon in engineering (including state-of-the-art and applications) and presents some of the most important theoretical and computational developments in porous media and transport phenomenon domain, providing a self-contained major reference that is appealing to both the scientists, researchers and the engineers. At the same time, these topics encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.


Physics of Flow in Porous Media

Physics of Flow in Porous Media

Author: Jens Feder

Publisher: Cambridge University Press

Published: 2022-10-06

Total Pages: 361

ISBN-13: 1108839118

DOWNLOAD EBOOK

A comprehensive, stepwise introduction to the basic terminology, methods and theory of the physics of flow in porous media.