This book presents a complex approach to material composition determination based on the analysis of the joint X-ray spectrum, including fluorescence, scattering, and diffraction reflections. It considers fluorescence, scattered, and diffracted radiations within the common problem of analytical spectrum formation. The complex methods for analyzing the material composition by joint spectra of fluorescence, Compton scattering and diffraction proposed here allow for a widening of the area of the application of X-ray methods. The book will be useful for specialists in the field of solid state physics, as well as advanced and post-graduate students.
X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a micrometer-scale. And, the recent development and commercialization of bench top and portable instrumentation, offering extreme simplicity of operation in a low-cost design, have extended the applications of XRF to many more analytical problems.
X-Ray Fluorescence in Biological Sciences Discover a comprehensive exploration of X-ray fluorescence in chemical biology and the clinical and plant sciences In X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, a team of accomplished researchers delivers extensive coverage of the application of X-ray fluorescence (XRF) in the biological sciences, including chemical biology, clinical science, and plant science. The book also explores recent advances in XRF imaging techniques in these fields. The authors focus on understanding and investigating the intercellular structures and metals in plant cells, with advanced discussions of recently developed micro-analytical methods, like energy dispersive X-ray fluorescence spectrometry (EDXRF), total reflection X-ray fluorescence spectrometry (TXRF), micro-proton induced X-ray emission (micro-PIXE), electron probe X-ray microanalysis (EPXMA), synchrotron-based X-ray fluorescence microscopy (SXRF, SRIXE, or micro-XRF) and secondary ion mass spectrometry (SIMS). With thorough descriptions of protocols and practical approaches, the book also includes: A thorough introduction to the historical background and fundamentals of X-ray fluorescence, as well as recent developments in X-ray fluorescence analysis Comprehensive explorations of the general properties, production, and detection of X-rays and the preparation of samples for X-ray fluorescence analysis Practical discussions of the quantification of prepared samples observed under X-ray fluorescence and the relation between precision and beam size and sample amount In-depth examinations of wavelength-dispersive X-ray fluorescence and living materials Perfect for students and researchers studying the natural and chemical sciences, medical biology, plant physiology, agriculture, and botany, X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications will also earn a place in the libraries of researchers at biotechnology companies.
Reviewing the analytical strategies used in the study of cultural heritage assets, this book pays particular attention to analytical methodology and ensuring reliable results are obtained for those working in conservation practice.
The Oxford Handbook of Archaeological Ceramic Analysis draws together topics and methodologies essential for the socio-cultural, mineralogical, and geochemical analysis of archaeological ceramic. Ceramic is one of the most complex and ubiquitous archaeomaterials in the archaeological record: it occurs around the world and through time in almost every culture and context, from building materials and technological installations to utilitarian wares and votive figurines. For more than 100 years, archaeologists have used ceramic analysis to answer complex questions about economy, subsistence, technological innovation, social organization, and dating. The volume is structured around the themes 'Research design and data analysis', 'Foundational concepts', 'Evaluating ceramic provenance', 'Investigating ceramic manufacture', 'Assessing vessel function', and 'Dating ceramic assemblages'. It provides a common vocabulary and offers practical tools and guidelines for ceramic analysis using techniques and methodologies ranging from network analysis and typology to rehydroxylation dating and inductively coupled plasma mass spectrometry. Each chapter provides the theoretical background and practical guidelines, such as cost and destructiveness of analysis, for each technique, as well as detailed case studies illustrating the application and interpretation of analytical data for answering anthropological questions.
The Light Metals symposia at the TMS Annual Meeting & Exhibition present the most recent developments, discoveries, and practices in primary aluminum science and technology. The annual Light Metals volume has become the definitive reference in the field of aluminum production and related light metal technologies. The 2020 collection includes papers from the following symposia: • Alumina and Bauxite• Aluminum Alloys, Processing and Characterization• Aluminum Reduction Technology• Cast Shop Technology• Cast Shop Technology: Recycling and Sustainability Joint Session• Electrode Technology for Aluminum Production
This volume explores the cultural meaning of ochre among the societies of the Late Epipalaeolithic/Mesolithic and the Early Neolithic from the Levant to the Carpathian Basin.