Theory of Hierarchical, Multilevel, Systems
Author: Mihajlo D. Mesarovic
Publisher:
Published: 1970
Total Pages: 320
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Mihajlo D. Mesarovic
Publisher:
Published: 1970
Total Pages: 320
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher: Elsevier
Published: 2000-04-01
Total Pages: 313
ISBN-13: 0080955770
DOWNLOAD EBOOKIn this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Author: Franz Pichler
Publisher: Springer Science & Business Media
Published: 1990-02-07
Total Pages: 440
ISBN-13: 9783540522157
DOWNLOAD EBOOKNonlinear Evolution Equations and Dynamical Systems (NEEDS) provides a presentation of the state of the art. Except for a few review papers, the 40 contributions are intentially brief to give only the gist of the methods, proofs, etc. including references to the relevant litera- ture. This gives a handy overview of current research activities. Hence, the book should be equally useful to the senior resercher as well as the colleague just entering the field. Keypoints treated are: i) integrable systems in multidimensions and associated phenomenology ('dromions'); ii) criteria and tests of integrability (e.g., Painlevé test); iii) new developments related to the scattering transform; iv) algebraic approaches to integrable systems and Hamiltonian theory (e.g., connections with Young-Baxter equations and Kac-Moody algebras); v) new developments in mappings and cellular automata, vi) applications to general relativity, condensed matter physics, and oceanography.
Author: Gabriel Altmann
Publisher: Walter de Gruyter
Published: 2011-07-11
Total Pages: 797
ISBN-13: 3110801191
DOWNLOAD EBOOKAuthor:
Publisher: John Wiley & Sons
Published: 1980
Total Pages: 488
ISBN-13:
DOWNLOAD EBOOK"The purpose of this book is to present the theory of control and coordination in hierarchical systems - that is, in systems where the decision-making responsibility has been divided. Since it aims to present theory that will be useful for applications, it not only encompasses the basic, general, and consequently somewhat abstract principles of coordination, but also considers such practical features as differences between models and the reality they describe, constraints, possible use of feedback information, and time horizons." --Preface.
Author: Niles Eldredge
Publisher: University of Chicago Press
Published: 2016-09-23
Total Pages: 394
ISBN-13: 022642619X
DOWNLOAD EBOOKThe natural world is infinitely complex and hierarchically structured, with smaller units forming the components of progressively larger systems: molecules make up cells, cells comprise tissues and organs that are, in turn, parts of individual organisms, which are united into populations and integrated into yet more encompassing ecosystems. In the face of such awe-inspiring complexity, there is a need for a comprehensive, non-reductionist evolutionary theory. Having emerged at the crossroads of paleobiology, genetics, and developmental biology, the hierarchical approach to evolution provides a unifying perspective on the natural world and offers an operational framework for scientists seeking to understand the way complex biological systems work and evolve. Coedited by one of the founders of hierarchy theory and featuring a diverse and renowned group of contributors, this volume provides an integrated, comprehensive, cutting-edge introduction to the hierarchy theory of evolution. From sweeping historical reviews to philosophical pieces, theoretical essays, and strictly empirical chapters, it reveals hierarchy theory as a vibrant field of scientific enterprise that holds promise for unification across the life sciences and offers new venues of empirical and theoretical research. Stretching from molecules to the biosphere, hierarchy theory aims to provide an all-encompassing understanding of evolution and—with this first collection devoted entirely to the concept—will help make transparent the fundamental patterns that propel living systems.
Author: Todor Stoilov
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 284
ISBN-13: 9400900171
DOWNLOAD EBOOKMultilevel decision theory arises to resolve the contradiction between increasing requirements towards the process of design, synthesis, control and management of complex systems and the limitation of the power of technical, control, computer and other executive devices, which have to perform actions and to satisfy requirements in real time. This theory rises suggestions how to replace the centralised management of the system by hierarchical co-ordination of sub-processes. All sub-processes have lower dimensions, which support easier management and decision making. But the sub-processes are interconnected and they influence each other. Multilevel systems theory supports two main methodological tools: decomposition and co-ordination. Both have been developed, and implemented in practical applications concerning design, control and management of complex systems. In general, it is always beneficial to find the best or optimal solution in processes of system design, control and management. The real tendency towards the best (optimal) decision requires to present all activities in the form of a definition and then the solution of an appropriate optimization problem. Every optimization process needs the mathematical definition and solution of a well stated optimization problem. These problems belong to two classes: static optimization and dynamic optimization. Static optimization problems are solved applying methods of mathematical programming: conditional and unconditional optimization. Dynamic optimization problems are solved by methods of variation calculus: Euler Lagrange method; maximum principle; dynamical programming.
Author: G. David Garson
Publisher: SAGE
Published: 2013
Total Pages: 393
ISBN-13: 1412998859
DOWNLOAD EBOOKThis book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
Author: Sara Green
Publisher: Springer
Published: 2016-12-15
Total Pages: 274
ISBN-13: 3319470000
DOWNLOAD EBOOKThe emergence of systems biology raises many fascinating questions: What does it mean to take a systems approach to problems in biology? To what extent is the use of mathematical and computational modelling changing the life sciences? How does the availability of big data influence research practices? What are the major challenges for biomedical research in the years to come? This book addresses such questions of relevance not only to philosophers and biologists but also to readers interested in the broader implications of systems biology for science and society. The book features reflections and original work by experts from across the disciplines including systems biologists, philosophers, and interdisciplinary scholars investigating the social and educational aspects of systems biology. In response to the same set of questions, the experts develop and defend their personal perspectives on the distinctive character of systems biology and the challenges that lie ahead. Readers are invited to engage with different views on the questions addressed, and may explore numerous themes relating to the philosophy of systems biology. This edited work will appeal to scholars and all levels, from undergraduates to researchers, and to those interested in a variety of scholarly approaches such as systems biology, mathematical and computational modelling, cell and molecular biology, genomics, systems theory, and of course, philosophy of biology.
Author: Yacov Y. Haimes
Publisher: John Wiley & Sons
Published: 2018-09-04
Total Pages: 950
ISBN-13: 1119173698
DOWNLOAD EBOOKA comprehensive guide to the theory, methodology, and development for modeling systems of systems Modeling and Managing Interdependent Complex Systems of Systems examines the complexity of, and the risk to, emergent interconnected and interdependent complex systems of systems in the natural and the constructed environment, and in its critical infrastructures. For systems modelers, this book focuses on what constitutes complexity and how to understand, model and manage it.Previous modeling methods for complex systems of systems were aimed at developing theory and methodologies for uncoupling the interdependencies and interconnections that characterize them. In this book, the author extends the above by utilizing public- and private- sector case studies; identifies, explores, and exploits the core of interdependencies; and seeks to understand their essence via the states of the system, and their dominant contributions to the complexity of systems of systems. The book proposes a reevaluation of fundamental and practical systems engineering and risk analysis concepts on complex systems of systems developed over the past 40 years. This important resource: Updates and streamlines systems engineering theory, methodology, and practice as applied to complex systems of systems Introduces modeling methodology inspired by philosophical and conceptual thinking from the arts and sciences Models the complexity of emergent interdependent and interconnected complex systems of systems by analyzing their shared states, decisions, resources, and decisionmakers Written for systems engineers, industrial engineers, managers, planners, academics and other professionals in engineering systems and the environment,this text is the resource for understanding the fundamental principles of modeling and managing complex systems of systems, and the risk thereto.