Theory of Heavy-Fermion Compounds

Theory of Heavy-Fermion Compounds

Author: Miron Ya. Amusia

Publisher: Springer

Published: 2014-10-25

Total Pages: 375

ISBN-13: 3319108255

DOWNLOAD EBOOK

This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.


The Kondo Problem to Heavy Fermions

The Kondo Problem to Heavy Fermions

Author: Alexander Cyril Hewson

Publisher: Cambridge University Press

Published: 1997-04-28

Total Pages: 476

ISBN-13: 9780521599474

DOWNLOAD EBOOK

The behaviour of magnetic impurities in metals has posed problems to challenge the condensed matter theorist over the past 30 years. This book deals with the concepts and techniques which have been developed to meet this challenge, and with their application to the interpretation of experiments. This book will be of interest to condensed matter physicists, particularly those interested in strong correlation problems. The detailed discussions of advanced many-body techniques should make it of interest to theoretical physicists in general.


Strongly Correlated Fermi Systems

Strongly Correlated Fermi Systems

Author: Miron Amusia

Publisher: Springer Nature

Published: 2020-07-16

Total Pages: 385

ISBN-13: 3030503593

DOWNLOAD EBOOK

This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the “missing” instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors’ own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.


Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions

Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions

Author: L.C. Gupta

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 749

ISBN-13: 1461309476

DOWNLOAD EBOOK

During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence ard heavy fermion phenomena. In spite of this, the response to this' Conference was very enthusiastic and encouraging. Many interesting ard important results were presented at this Conference which have been included in this volume.


Introduction to Many-Body Physics

Introduction to Many-Body Physics

Author: Piers Coleman

Publisher: Cambridge University Press

Published: 2015-11-26

Total Pages: 815

ISBN-13: 1316432025

DOWNLOAD EBOOK

A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.


Encyclopedia of the Alkaline Earth Compounds

Encyclopedia of the Alkaline Earth Compounds

Author: Richard C. Ropp

Publisher: Newnes

Published: 2012-12-31

Total Pages: 1201

ISBN-13: 0444595538

DOWNLOAD EBOOK

Encyclopedia of the Alkaline Earth Compounds is a compilation describing the physical and chemical properties of all of the alkaline earth compounds that have been elucidated to date in the scientific literature. These compounds are used in applications such as LEDs and electronic devices such as smart phones and tablet computers. Preparation methods for each compound are presented to show which techniques have been successful. Structures and phase diagrams are presented where applicable to aid in understanding the complexities of the topics discussed. With concise descriptions presenting the chemical, physical and electrical properties of any given compound, this subject matter will serve as an introduction to the field. This compendium is vital for students and scientific researchers in all fields of scientific endeavors, including non-chemists. 2013 Honorable Mention in Chemistry & Physics from the Association of American Publishers' PROSE Awards Presents a systematic coverage of all known alkaline earth inorganic compounds and their properties Provides a clear, consistent presentation based on groups facilitatating easy comparisons Includes the structure of all the compounds in high quality full-color graphics Summarizes all currently known properties of the transition metals compounds Lists the uses and applications of these compounds in electronics, energy, and catalysis


Introduction to Unconventional Superconductivity

Introduction to Unconventional Superconductivity

Author: V.P. Mineev

Publisher: CRC Press

Published: 1999-09-21

Total Pages: 204

ISBN-13: 9789056992095

DOWNLOAD EBOOK

Unconventional superconductivity (or superconductivity with a nontrivial Cooper pairing) is believed to exist in many heavy-fermion materials as well as in high temperature superconductors, and is a subject of great theoretical and experimental interest. The remarkable progress achieved in this field has not been reflected in published monographs and textbooks, and there is a gap between current research and the standard education of solid state physicists in the theory of superconductivity. This book is intended to meet this information need and includes the authors' original results.


Magnetism in Heavy Fermion Systems

Magnetism in Heavy Fermion Systems

Author: Harry Brian Radousky

Publisher: World Scientific

Published: 2000

Total Pages: 395

ISBN-13: 9810243480

DOWNLOAD EBOOK

Annotation The six articles are heavily weighted toward an experimental perspective, but one details a particular set of theoretical models for f-electron systems, and the introduction overviews the role of magnetism in heavy fermion materials as well as summarizing the content of each subsequent article. They in turn cover superconductors, muon spin relaxation studies of small-moment heavy fermion systems, neutron scattering, and magnetism in the praseodymium-containing cuprates. Annotation copyrighted by Book News Inc., Portland, OR.


Point-Contact Spectroscopy

Point-Contact Spectroscopy

Author: Yu.G. Naidyuk

Publisher: Springer

Published: 2019-04-04

Total Pages: 303

ISBN-13: 1475762054

DOWNLOAD EBOOK

Various experimental techniques for point contact production are described. Examples of point-contact spectra are presented for pure metals, alloys and compounds, as well as for semimetals and semiconductors, heavy fermion systems, Kond-lattices, mixed valence compounds and more. Superconducting point contacts are considered in respect to Andreev reflection and Josephson effects. Special attention is paid to contact conductance fluctuation, and new trends of research are outlined.