Flame retardant materials are of vital importance in guaranteeing personal security. Especially the demand for non-toxic, low smoking, polymerized flame retardants increases and new materials enter the market. The authors present the fundamental theory of polymer combustion, compare different flame retardants, describe smoke suppression mechanisms, and explain analyzing techniques for new materials.
Flame retardant materials are of vital importance in guaranteeing personal security. Especially the demand for non-toxic, low smoking, polymerized flame retardants increases and new materials enter the market. The authors present the fundamental theory of polymer combustion, compare different flame retardants, describe smoke suppression mechanisms, and explain analyzing techniques for new materials.
Flammability has been recognized as an increasingly important social and scientific problem. Fire statistics in the United States (Report of the National Commission on Fire Prevention and Control, "America Burning," 1973) emphasized the vast devastation to life and property--12,OOO lives lost annually due to fire, and these deaths are usually caused by inhaling smoke or toxic gases; 300,000 fire injuries; 11.4 billion dollars in fire cost at which 2.7 billion dollars is related to property loss; a billion dollars to burn injury treatment; and 3.3 billion dollars in productivity loss. It is obvious that much human and economic misery can be attributed to fire situations. In relation to this, polymer flammability has been recognized as an in creasingly important social and scientific problem. The development of flame-retardant polymeric materials is a current example where the initia tive for major scientific and technological developments is motivated by sociological pressure and legislation. This is part of the important trend toward a safer environment and sets a pattern for future example. Flame retardancy deals with our basic everyday life situations-housing, work areas, transportation, clothing and so forth-the "macroenvironment" capsule within which "homosapiens" live. As a result, flame-retardant polymers are now emerging as a specific class of materials leading to new and diversified scientific and technological ventures.
Flammability has been recognized as an increasingly important social and scientific problem. Fire statistics in the United States (Report of the National Commission on Fire Prevention and Control. "America Burning:' 1973) emphasized the vast devastation to life and property--12.000 lives lost annually due to fire. and these deaths are usually caused by inhaling smoke or toxic gases: 300.000 fire injuries: 11.4 billion dollars in fire cost at which 2.7 billion dollars is related to property loss: a billion dollars to burn injury treatment: and 3.3 billion dollars in productivity loss. It is obvious that much human and economic misery can be attributed to fire situations. In relation to this. polymer flammability has been recognized as an in creasingly important social and scientific problem. The development of flame-retardant polymeric materials is a current example where the initia tive for major scientific and technological developments is motivated by sociological pressure and legislation. This is part of the important trend toward a safer environment and sets a pattern for future example. Flame retardancy deals with our basic everyday life situations-housing. work areas. transportation. clothing and so forth-the "macroenvironment" capsule within which "homosapiens" live. As a result. flame-retardant polymers are now emerging as a specific class of materials leading to new and diversified scientific and technological ventures.
Flame Retardant Polymer Nanocomposites takes a comprehensive look at polymer nanocomposites for flame retardancy applications and includes nanocomposite fundamentals (theory, design, synthesis, characterization) as well as polymer flammability fundamentals with emphasis on how nanocomposites affect flammability. The book has practical examples from literature, patents, and existing commercial products. Readers can design new work based upon the material in the book or use it as a handy reference for interpreting existing work and results.
This book is the first to deal with the important topic of the fire behaviour of fibre reinforced polymer composite materials. The book covers all of the key issues on the behaviour of composites in a fire. Also covered are fire protection materials for composites, fire properties of nanocomposites, fire safety regulations and standards, fire test methods, and health hazards from burning composites.
Polyurea: Synthesis, Properties, Composites, Production, and Applications is a comprehensive and practical guide to polyurea, a material used for its exceptional properties and performance in a range of high value industrial applications. Sections cover polyurea formulations and properties, comparing aromatic polyurea with aliphatic polyurea and computation modeling of properties for polyurea and polyurea composites. This is followed by in-depth coverage of synthesis, structure and production methods of polyurea, with the connections between production, performance and properties examined thoroughly. Other sections explain the preparation, characterization, modeling and applications of polyurea and polyurea composites with the required properties for specific advanced applications. Finally, environmental issues, recycling and future potential of polyurea are considered. This is a valuable resource for researchers and advanced students in polymer science, chemistry, composite science, civil engineering, materials science and mechanical engineering, as well as R&D professionals, engineers and industrial scientists with an interest in polyurea-based materials for advanced applications. - Provides the fundamentals of polyurea, including synthesis, structure, formulations and properties - Explains conventional and novel production methods for polyurea and polyurea composites, analyzing their advantages and limitations - Guides the reader to advanced industrial applications across areas such as construction, defense, engineering and biomedicine
"This authoritative reference work will provide a comprehensive source of information for readers concerned with the highly diverse subject of fire retardance. The emphasis is on the burning behaviour and flame retarding properties of polymeric materials. It covers combustion, flame retardants, smoke and toxic products generally and goes on to concentrate on more material-specific aspects of combustion in relation to textiles, composites and bulk polymers. A wide range of fire retardant materials are covered including research in the new field of nanocomposites."--Knovel.
Materials are at the center of all technological advances; it is evident in considering the spectacular progress that has been made in fields as diverse as engineering, medicine, biology, etc. Materials science and technology must develop researches allowing the generation of new methods of protection to reduce fundamentally the losses of human life as well as the economic ones. The former are impossible of quantifying, while the latter are highly significant; thus, only those derived from corrosive processes in their different forms reach, in technologically developed countries, about 4% of the Gross National Product (GNP), while those derived from fire action range from 0.5 to 1.0% of the mentioned GNP. The book, in the different chapters, displays original systems of superficial protection and of low environmental impact to minimize the losses by corrosion and the fire action.