Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation

Author: Xin-She Yang

Publisher: Newnes

Published: 2013-05-16

Total Pages: 445

ISBN-13: 0124051774

DOWNLOAD EBOOK

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.


Nature-Inspired Computation and Swarm Intelligence

Nature-Inspired Computation and Swarm Intelligence

Author: Xin-She Yang

Publisher: Academic Press

Published: 2020-04-10

Total Pages: 442

ISBN-13: 0128197145

DOWNLOAD EBOOK

Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.


Theory and New Applications of Swarm Intelligence

Theory and New Applications of Swarm Intelligence

Author: Rafael Parpinelli

Publisher: BoD – Books on Demand

Published: 2012-03-16

Total Pages: 207

ISBN-13: 9535103644

DOWNLOAD EBOOK

The field of research that studies the emergent collective intelligence of self-organized and decentralized simple agents is referred to as Swarm Intelligence. It is based on social behavior that can be observed in nature, such as flocks of birds, fish schools and bee hives, where a number of individuals with limited capabilities are able to come to intelligent solutions for complex problems. The computer science community have already learned about the importance of emergent behaviors for complex problem solving. Hence, this book presents some recent advances on Swarm Intelligence, specially on new swarm-based optimization methods and hybrid algorithms for several applications. The content of this book allows the reader to know more both theoretical and technical aspects and applications of Swarm Intelligence.


Swarm Intelligence

Swarm Intelligence

Author: Aboul Ella Hassanien

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 210

ISBN-13: 149874107X

DOWNLOAD EBOOK

Swarm Intelligence: Principles, Advances, and Applications delivers in-depth coverage of bat, artificial fish swarm, firefly, cuckoo search, flower pollination, artificial bee colony, wolf search, and gray wolf optimization algorithms. The book begins with a brief introduction to mathematical optimization, addressing basic concepts related to swarm intelligence, such as randomness, random walks, and chaos theory. The text then: Describes the various swarm intelligence optimization methods, standardizing the variants, hybridizations, and algorithms whenever possible Discusses variants that focus more on binary, discrete, constrained, adaptive, and chaotic versions of the swarm optimizers Depicts real-world applications of the individual optimizers, emphasizing variable selection and fitness function design Details the similarities, differences, weaknesses, and strengths of each swarm optimization method Draws parallels between the operators and searching manners of the different algorithms Swarm Intelligence: Principles, Advances, and Applications presents a comprehensive treatment of modern swarm intelligence optimization methods, complete with illustrative examples and an extendable MATLAB® package for feature selection in wrapper mode applied on different data sets with benchmarking using different evaluation criteria. The book provides beginners with a solid foundation of swarm intelligence fundamentals, and offers experts valuable insight into new directions and hybridizations.


Swarm Intelligence

Swarm Intelligence

Author: Christian Blum

Publisher: Springer Science & Business Media

Published: 2008-09-24

Total Pages: 284

ISBN-13: 3540740899

DOWNLOAD EBOOK

The book’s contributing authors are among the top researchers in swarm intelligence. The book is intended to provide an overview of the subject to novices, and to offer researchers an update on interesting recent developments. Introductory chapters deal with the biological foundations, optimization, swarm robotics, and applications in new-generation telecommunication networks, while the second part contains chapters on more specific topics of swarm intelligence research.


Artificial Intelligence: Theory and Applications

Artificial Intelligence: Theory and Applications

Author: Endre Pap

Publisher: Springer Nature

Published: 2021-07-15

Total Pages: 353

ISBN-13: 3030727114

DOWNLOAD EBOOK

This book is an up-to-date collection, in AI and environmental research, related to the project ATLAS. AI is used for gaining an understanding of complex research phenomena in the environmental sciences, encompassing heterogeneous, noisy, inaccurate, uncertain, diverse spatio-temporal data and processes. The first part of the book covers new mathematics in the field of AI: aggregation functions with special classes such as triangular norms and copulas, pseudo-analysis, and the introduction to fuzzy systems and decision making. Generalizations of the Choquet integral with applications in decision making as CPT are presented. The second part of the book is devoted to AI in the geo-referenced air pollutants and meteorological data, image processing, machine learning, neural networks, swarm intelligence, robotics, mental well-being and data entry errors. The book is intended for researchers in AI and experts in environmental sciences as well as for Ph.D. students.


Handbook of Swarm Intelligence

Handbook of Swarm Intelligence

Author: Bijaya Ketan Panigrahi

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 538

ISBN-13: 364217390X

DOWNLOAD EBOOK

From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more. It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques. In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe. It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS). With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving.


Swarm Intelligence

Swarm Intelligence

Author: Felix Chan

Publisher: BoD – Books on Demand

Published: 2007-12-01

Total Pages: 550

ISBN-13: 3902613092

DOWNLOAD EBOOK

In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state. The escalating complexity has demanded researchers to find the possible ways of easing the solution of the problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to be efficient in handling the computationally complex problems with competence such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm Optimization" aims to present recent developments and applications concerning optimization with swarm intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm intelligence, this book also presented some selected representative case studies covering power plant maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems; manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems; wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these topics.


Swarm Intelligence for Resource Management in Internet of Things

Swarm Intelligence for Resource Management in Internet of Things

Author: Aboul Ella Hassanien

Publisher: Academic Press

Published: 2020-08-18

Total Pages: 169

ISBN-13: 0128182881

DOWNLOAD EBOOK

Internet of Things (IoT) is a new platform of various physical objects or "things equipped with sensors, electronics, smart devices, software, and network connections. IoT represents a new revolution of the Internet network which is driven by the recent advances of technologies such as sensor networks (wearable and implantable), mobile devices, networking, and cloud computing technologies. IoT permits these the smart devices to collect, store and analyze the collected data with limited storage and processing capacities. Swarm Intelligence for Resource Management in the Internet of Things presents a new approach in Artificial Intelligence that can be used for resources management in IoT, which is considered a critical issue for this network. The authors demonstrate these resource management applications using swarm intelligence techniques. Currently, IoT can be used in many important applications which include healthcare, smart cities, smart homes, smart hospitals, environment monitoring, and video surveillance. IoT devices cannot perform complex on-site data processing due to their limited battery and processing. However, the major processing unit of an application can be transmitted to other nodes, which are more powerful in terms of storage and processing. By applying swarm intelligence algorithms for IoT devices, we can provide major advantages for energy saving in IoT devices. Swarm Intelligence for Resource Management in the Internet of Things shows the reader how to overcome the problems and challenges of creating and implementing swarm intelligence algorithms for each application - Examines the development and application of swarm intelligence systems in artificial intelligence as applied to the Internet of Things - Discusses intelligent techniques for the implementation of swarm intelligence in IoT - Prepared for researchers and specialists who are interested in the use and integration of IoT and cloud computing technologies