Emphasis of this text is on the basic assumptions and the formulation of the theory of compressible flow as well as on the methods of solving problems. Published by Science Press, Beijing, distributed by VNR in the US. Annotation copyrighted by Book News, Inc., Portland, OR
A practical approach to the computational methods used to solve real-world dynamics problems Computational dynamics has grown rapidly in recent years with the advent of high-speed digital computers and the need to develop simulation and analysis computational capabilities for mechanical and aerospace systems that consist of interconnected bodies. Computational Dynamics, Second Edition offers a full introduction to the concepts, definitions, and techniques used in multibody dynamics and presents essential topics concerning kinematics and dynamics of motion in two and three dimensions. Skillfully organized into eight chapters that mirror the standard learning sequence of computational dynamics courses, this Second Edition begins with a discussion of classical techniques that review some of the fundamental concepts and formulations in the general field of dynamics. Next, it builds on these concepts in order to demonstrate the use of the methods as the foundation for the study of computational dynamics. Finally, the book presents different computational methodologies used in the computer-aided analysis of mechanical and aerospace systems. Each chapter features simple examples that show the main ideas and procedures, as well as straightforward problem sets that facilitate learning and help readers build problem-solving skills. Clearly written and ready to apply, Computational Dynamics, Second Edition is a valuable reference for both aspiring and practicing mechanical and aerospace engineers.
This book discusses the fundamental principles and equations governing the motion of incompressible Newtonian fluids, and simultaneously introduces numerical methods for solving a broad range of problems. Appendices provide a wealth of information that establishes the necessary mathematical and computational framework.
Many introductions to fluid dynamics offer an illustrative approach that demonstrates some aspects of fluid behavior, but often leave you without the tools necessary to confront new problems. For more than a decade, Fluid Dynamics: Theoretical and Computational Approaches has supplied these missing tools with a constructive approach that mad
This book gives an introduction to the theoretical and computational fluid dynamics of a compressible fluid. It focuses on the basic assumptions and the formulation of the theory of compressible flow as well as on the methods of solving problems.
Ready access to computers at an institutional and personal level has defined a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering disciplines into the realm of scientific computing has become not only desirable, but also necessary. Thanks to port ability and low overhead and operating costs, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experiment at ion. The new environment has motivated the writing of texts and mono graphs with a modern perspective that incorporates numerical and com puter programming aspects as an integral part of the curriculum: meth ods, concepts, and ideas should be presented in a unified fashion that motivates and underlines the urgency of the new elements, but does not compromise the rigor of the classical approach and does not oversimplify. Interfacing fundamental concepts and practical methods of scientific computing can be done on different levels. In one approach, theory and implement at ion are kept complementary and presented in a sequential fashion. In a second approach, the coupling involves deriving compu tational methods and simulation algorithms, and translating equations into computer code instructions immediately following problem formu lations. The author of this book is a proponent of the second approach and advocates its adoption as a means of enhancing learning: interject ing methods of scientific computing into the traditional discourse offers a powerful venue for developing analytical skills and obtaining physical insight.
The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD).Features of this book:• Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD• Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers• Provides chemical reactions, interfaces, catalysis, surface phenomena and solidsAlthough the book is not formally divided into methods and applications, the chapters are arranged starting with those that discuss new algorithms, methods and techniques, followed by several important applications.
Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures.No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems. - Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering - Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators - Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software
The book presents high-quality papers presented at 3rd International Conference on Applications of Fluid Dynamics (ICAFD 2016) organized by Department of Applied Mathematics, ISM Dhanbad, Jharkhand, India in association with Fluid Mechanics Group, University of Botswana, Botswana. The main theme of the Conference is "Sustainable Development in Africa and Asia in context of Fluid Dynamics and Modeling Approaches". The book is divided into seven sections covering all applications of fluid dynamics and their allied areas such as fluid dynamics, nanofluid, heat and mass transfer, numerical simulations and investigations of fluid dynamics, magnetohydrodynamics flow, solute transport modeling and water jet, and miscellaneous. The book is a good reference material for scientists and professionals working in the field of fluid dynamics.