Theoretical Chemistry for Experimental Chemists

Theoretical Chemistry for Experimental Chemists

Author: Kazuyoshi Tanaka

Publisher: Springer Nature

Published: 2020-08-28

Total Pages: 201

ISBN-13: 9811571953

DOWNLOAD EBOOK

This book presents active application aspects of theoretical chemistry, and is particularly intended for experimental chemists, ranging from graduate students to more professional researchers, who are developing new materials or searching for novel properties of the materials they work with. It not only addresses the fundamental aspects of theoretical chemistry but also provides abundant examples of applications based on the electronic structure analyses of actual systems. As the book demonstrates, these analyses can deepen our understanding of a variety of chemical phenomena, including the chemical reactivities and electronic properties of substances, in a bottom-up manner. By illustrating how electronic structure analyses can be effectively applied, the book introduces readers to the impressive potential of theoretical chemistry, which they can adapt for their own purposes, and without having to suffer through a parade of complex formulae.


An Introduction to Theoretical Chemistry

An Introduction to Theoretical Chemistry

Author: Jack Simons

Publisher: Cambridge University Press

Published: 2003-03-20

Total Pages: 484

ISBN-13: 9780521530477

DOWNLOAD EBOOK

Textbook on modern theoretical chemistry suitable for advanced undergraduate or graduate students.


Theoretical Chemistry for Advanced Nanomaterials

Theoretical Chemistry for Advanced Nanomaterials

Author: Taku Onishi

Publisher: Springer Nature

Published: 2020-02-03

Total Pages: 547

ISBN-13: 9811500061

DOWNLOAD EBOOK

This book collects recent topics of theoretical chemistry for advanced nanomaterials from the points of view of both computational and experimental chemistry. It is written for computational and experimental chemists, including undergraduate students, who are working with advanced nanomaterials, where collaboration and interplay between computation and experiment are essential. After the general introduction of nanomaterials, several computational approaches are explained in Part II. Each chapter presents not only calculation methods but also concrete calculation results for advanced nanomaterials. Hydride ion conducting nanomaterials, high-k dielectric nanomaterials, and organic electronics are focused on. In Part III, the interplay between computational and experimental approaches is explained. The chapters show calculation results, combined with corresponding experimental data. Dimensionality of nanomaterials, electronic structure of oligomers and nanorods, carbon nanomaterials, and the electronic structure of a nanosized sandwich cluster is looked at carefully. In Part IV, functionality analysis is explained from the point of view of the experimental approach. The emphasis is on the mechanism of photoluminescence and hydrogen generation using silicon nanopowder, the superionic conducting mechanism of glass ceramics, nanoclusters formation on the surface of metal oxides, and the magnetic property of an organic one-dimensional nanochannel. Finally, forthcoming theoretical methods for excited states and quantum dynamics are introduced in Part V.


Mathematical Challenges from Theoretical/Computational Chemistry

Mathematical Challenges from Theoretical/Computational Chemistry

Author: National Research Council

Publisher: National Academies Press

Published: 1995-03-29

Total Pages: 143

ISBN-13: 030917662X

DOWNLOAD EBOOK

Computational methods are rapidly becoming major tools of theoretical, pharmaceutical, materials, and biological chemists. Accordingly, the mathematical models and numerical analysis that underlie these methods have an increasingly important and direct role to play in the progress of many areas of chemistry. This book explores the research interface between computational chemistry and the mathematical sciences. In language that is aimed at non-specialists, it documents some prominent examples of past successful cross-fertilizations between the fields and explores the mathematical research opportunities in a broad cross-section of chemical research frontiers. It also discusses cultural differences between the two fields and makes recommendations for overcoming those differences and generally promoting this interdisciplinary work.


Theoretical Chemistry for Chemists

Theoretical Chemistry for Chemists

Author: Tobias Grömke

Publisher: GRIN Verlag

Published: 2018-01-12

Total Pages: 131

ISBN-13: 3668610924

DOWNLOAD EBOOK

Document from the year 2016 in the subject Chemistry - Physical and Theoretical Chemistry, University of Duisburg-Essen, language: English, abstract: This is a book for all chemists who don't want to become theoretical chemists, but who want to understand user articles and presentations with theoretical concepts included and who want to use theoretical chemistry for there own projects. It gives an overview about: Hartree Fock Theory, Post-Hartree-Fock-Methods, Density-Functional-Theory, Solid-State-Physics, Force-Field Methods and Molecular Dynamics. Everything the chemist of the 21th century should know about Theoretical Chemistry, to be able to read articles with a satisfying yield of new informations, to be able to effectively talk to and work with theoretical chemists and to plan own calculations. The author offers an overview about Post-Hartree-Fock-Methods (Coupled Cluster (incl. Example for Application of Perturbation-Theory), Full CI, explicitly correlated methods) Density-Functional-Theory (Basic Equations, reason of lower computational cost, important Types of Functionals (LSD-Functionals, GGA-Functionals, Hybrid-Functionals)), Important points in searching the right method), Force-Field-methods (Basic Theory, Basic Equations, practical tips as tool in quantum-chemical Calculations), theoretical Solid-State Physics (differences to quantum chemical equations, special behavior of solid-state-systems, atomic groups with single-particle-behavior – like phonons, polarons, ...), the role of special techniques (Perturbation Theory, Group Theory) and shows connections of those techniques to molecular dynamics. For that he shows all necessary mathematics and derivations, when they are needed but just as deep as necessary. Not with the target to make the reader a theoretician. In front of the derivative part he commits his pictorial imagination of Hilbert-space, basis set, and quantum-chemical-calculations.


Computational Organic Chemistry

Computational Organic Chemistry

Author: Steven M. Bachrach

Publisher: John Wiley & Sons

Published: 2014-04-07

Total Pages: 653

ISBN-13: 1118291921

DOWNLOAD EBOOK

The Second Edition demonstrates how computational chemistry continues to shed new light on organic chemistry The Second Edition of author Steven Bachrach’s highly acclaimed Computational Organic Chemistry reflects the tremendous advances in computational methods since the publication of the First Edition, explaining how these advances have shaped our current understanding of organic chemistry. Readers familiar with the First Edition will discover new and revised material in all chapters, including new case studies and examples. There’s also a new chapter dedicated to computational enzymology that demonstrates how principles of quantum mechanics applied to organic reactions can be extended to biological systems. Computational Organic Chemistry covers a broad range of problems and challenges in organic chemistry where computational chemistry has played a significant role in developing new theories or where it has provided additional evidence to support experimentally derived insights. Readers do not have to be experts in quantum mechanics. The first chapter of the book introduces all of the major theoretical concepts and definitions of quantum mechanics followed by a chapter dedicated to computed spectral properties and structure identification. Next, the book covers: Fundamentals of organic chemistry Pericyclic reactions Diradicals and carbenes Organic reactions of anions Solution-phase organic chemistry Organic reaction dynamics The final chapter offers new computational approaches to understand enzymes. The book features interviews with preeminent computational chemists, underscoring the role of collaboration in developing new science. Three of these interviews are new to this edition. Readers interested in exploring individual topics in greater depth should turn to the book’s ancillary website www.comporgchem.com, which offers updates and supporting information. Plus, every cited article that is available in electronic form is listed with a link to the article.


Essentials of Computational Chemistry

Essentials of Computational Chemistry

Author: Christopher J. Cramer

Publisher: John Wiley & Sons

Published: 2013-04-29

Total Pages: 624

ISBN-13: 1118712277

DOWNLOAD EBOOK

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.


Computational Chemistry

Computational Chemistry

Author: David Young

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 408

ISBN-13: 0471458430

DOWNLOAD EBOOK

A practical, easily accessible guide for bench-top chemists, thisbook focuses on accurately applying computational chemistrytechniques to everyday chemistry problems. Provides nonmathematical explanations of advanced topics incomputational chemistry. Focuses on when and how to apply different computationaltechniques. Addresses computational chemistry connections to biochemicalsystems and polymers. Provides a prioritized list of methods for attacking difficultcomputational chemistry problems, and compares advantages anddisadvantages of various approximation techniques. Describes how the choice of methods of software affectsrequirements for computer memory and processing time.


Computational Quantum Chemistry

Computational Quantum Chemistry

Author: Joseph J W McDouall

Publisher: Royal Society of Chemistry

Published: 2015-11-09

Total Pages: 252

ISBN-13: 1782625860

DOWNLOAD EBOOK

Computational Quantum Chemistry presents computational electronic structure theory as practised in terms of ab initio waveform methods and density functional approaches. Getting a full grasp of the field can often prove difficult, since essential topics fall outside of the scope of conventional chemistry education. This professional reference book provides a comprehensive introduction to the field. Postgraduate students and experienced researchers alike will appreciate Joseph McDouall's engaging writing style. The book is divided into five chapters, each providing a major aspect of the field. Electronic structure methods, the computation of molecular properties, methods for analysing the output from computations and the importance of relativistic effects on molecular properties are also discussed. Links to the websites of widely used software packages are provided so that the reader can gain first hand experience of using the techniques described in the book.


The Basics of Theoretical and Computational Chemistry

The Basics of Theoretical and Computational Chemistry

Author: Bernd Michael Rode

Publisher: Wiley-VCH

Published: 2007-03-12

Total Pages: 195

ISBN-13: 9783527317738

DOWNLOAD EBOOK

This textbook does away with the classic, unimaginative approach and comes straight to the point with a bare minimum of mathematics -- emphasizing the understanding of concepts rather than presenting endless strings of formulae. It nonetheless covers all important aspects of computational chemistry, such as - vector space theory - quantum mechanics - approximation methods - theoretical models - and computational methods. Throughout the chapters, mathematics are differentiated by necessity for understanding - fundamental formulae, and all the others. All formulae are explained step by step without omission, but the non-vital ones are marked and can be skipped by those who do not relish complex mathematics. The reader will find the text a lucid and innovative introduction to theoretical and computational chemistry, with food for thought given at the end of each chapter in the shape of several questions that help develop understanding of the concepts. What the reader will not find in this book are condescending sentences such as, 'From (formula A) and (formula M) it is obvious that (formula Z).'