Theoretical Aspects of Evolutionary Computing

Theoretical Aspects of Evolutionary Computing

Author: Leila Kallel

Publisher: Springer Science & Business Media

Published: 2001-05-08

Total Pages: 516

ISBN-13: 9783540673965

DOWNLOAD EBOOK

This book is the first in the field to provide extensive, entry level tutorials to the theory of Evolutionary Computing, covering the main approaches to understanding the dynamics of Evolutionary Algorithms. It combines this with recent, previously unpublished research papers based on the material of the tutorials. The outcome is a book which is self-contained to a large degree, attractive both to graduate students and researchers from other fields who want to get acquainted with the theory of Evolutionary Computing, and to active researchers in the field who can use this book as a reference and a source of recent results.


Theoretical Aspects of Evolutionary Computing

Theoretical Aspects of Evolutionary Computing

Author: Leila Kallel

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 495

ISBN-13: 366204448X

DOWNLOAD EBOOK

During the first week of September 1999, the Second EvoNet Summer School on Theoretical Aspects of Evolutionary Computing was held at the Middelheim cam pus of the University of Antwerp, Belgium. Originally intended as a small get together of PhD students interested in the theory of evolutionary computing, the summer school grew to become a successful combination of a four-day workshop with over twenty researchers in the field and a two-day lecture series open to a wider audience. This book is based on the lectures and workshop contributions of this summer school. Its first part consists of tutorial papers which introduce the reader to a num ber of important directions in the theory of evolutionary computing. The tutorials are at graduate level andassume only a basic backgroundin mathematics and com puter science. No prior knowledge ofevolutionary computing or its theory is nec essary. The second part of the book consists of technical papers, selected from the workshop contributions. A number of them build on the material of the tutorials, exploring the theory to research level. Other technical papers may require a visit to the library.


Automata, Languages and Programming

Automata, Languages and Programming

Author: Fernando Orejas

Publisher: Springer Science & Business Media

Published: 2001-06-27

Total Pages: 1098

ISBN-13: 3540422870

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 28th International Colloquium on Automata, Languages and Programming, ICALP 2001, held in Crete, Greece in July 2001. The 80 revised papers presented together with two keynote contributions and four invited papers were carefully reviewed and selected from a total of 208 submissions. The papers are organized in topical sections on algebraic and circuit complexity, algorithm analysis, approximation and optimization, complexity, concurrency, efficient data structures, graph algorithms, language theory, codes and automata, model checking and protocol analysis, networks and routing, reasoning and verification, scheduling, secure computation, specification and deduction, and structural complexity.


Theory of Evolutionary Computation

Theory of Evolutionary Computation

Author: Benjamin Doerr

Publisher: Springer Nature

Published: 2019-11-20

Total Pages: 527

ISBN-13: 3030294145

DOWNLOAD EBOOK

This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.


Introduction to Evolutionary Computing

Introduction to Evolutionary Computing

Author: A.E. Eiben

Publisher: Springer Science & Business Media

Published: 2007-08-06

Total Pages: 328

ISBN-13: 9783540401841

DOWNLOAD EBOOK

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.


Advances in Evolutionary Computing

Advances in Evolutionary Computing

Author: Ashish Ghosh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1001

ISBN-13: 3642189652

DOWNLOAD EBOOK

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.


Evolutionary Algorithms and Neural Networks

Evolutionary Algorithms and Neural Networks

Author: Seyedali Mirjalili

Publisher: Springer

Published: 2018-06-26

Total Pages: 164

ISBN-13: 3319930257

DOWNLOAD EBOOK

This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.


The Nature of Code

The Nature of Code

Author: Daniel Shiffman

Publisher: No Starch Press

Published: 2024-09-03

Total Pages: 642

ISBN-13: 1718503717

DOWNLOAD EBOOK

All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.


Evolutionary Algorithms

Evolutionary Algorithms

Author: William M. Spears

Publisher: Springer Science & Business Media

Published: 2000-06-15

Total Pages: 244

ISBN-13: 9783540669500

DOWNLOAD EBOOK

Despite decades of work in evolutionary algorithms, there remains an uncertainty as to the relative benefits and detriments of using recombination or mutation. This book provides a characterization of the roles that recombination and mutation play in evolutionary algorithms. It integrates important prior work and introduces new theoretical techniques for studying evolutionary algorithms. Consequences of the theory are explored and a novel method for comparing search and optimization algorithms is introduced. The focus allows the book to bridge multiple communities, including evolutionary biologists and population geneticists.


Evolutionary Computation

Evolutionary Computation

Author: David B. Fogel

Publisher: John Wiley & Sons

Published: 2006-01-03

Total Pages: 294

ISBN-13: 0471749206

DOWNLOAD EBOOK

This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.