This historic book may have numerous typos and missing text. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1902 Excerpt: ...earth. r' = radius of moon, or other body. P = moon's horizontal parallax = earth's angular semidiameter as seen from the moon. f = moon's angular semidiameter. Now = P (in circular measure), r'-r = r (in circular measure);.'. r: r':: P: P', or (radius of earth): (radios of moon):: (moon's parallax): (moon's semidiameter). Examples. 1. Taking the moon's horizontal parallax as 57', and its angular diameter as 32', find its radius in miles, assuming the earth's radius to be 4000 miles. Here moon's semidiameter = 16';.-. 4000::: 57': 16';.-. r = 400 16 = 1123 miles. 2. The sun's horizontal parallax being 8"8, and his angular diameter 32V find his diameter in miles. ' Am. 872,727 miles. 3. The synodic period of Venus being 584 days, find the angle gained in each minute of time on the earth round the sun as centre. Am. l"-54 per minute. 4. Find the angular velocity with which Venus crosses the sun's disc, assuming the distances of Venus and the earth from the sun are as 7 to 10, as given by Bode's Law. Since (fig. 50) S V: VA:: 7: 3. But Srhas a relative angular velocity round the sun of l"-54 per minute (see Example 3); therefore, the relative angular velocity of A V round A is greater than this in the ratio of 7: 3, which gives an approximate result of 3"-6 per minute, the true rate being about 4" per minute. Annual ParaUax. 95. We have already seen that no displacement of the observer due to a change of position on the earth's surface could apparently affect the direction of a fixed star. However, as the earth in its annual motion describes an orbit of about 92 million miles radius round the sun, the different positions in space from which an observer views the fixed stars from time to time throughout the year must be separated ...
Mrs. Millwood is beautiful, intelligent, and ambitious, but London gives her no means of support except to seduce men. Love for her leads eighteen-year-old Barnwell to deceit, theft, and murder. "What are your laws," Mrs. Millwood asks, "but the fool?s wisdom and the coward?s valor, the instrument and screen of all your villainies by which you punish in others what you act out yourselves, had you been in their circumstances? The judge who condemns the poor man for being a thief had been a thief himself, had he been poor. Thus you go on deceiving and being deceived, harassing, plaguing, and destroying one another, but women are your universal prey." First performed in 1731, The London Merchant became on of the most popular plays of the century. A chronicler of the age, Theophilus Cibber called it "almost a new species of tragedy."
A comprehensive account of economic size distributions around the world and throughout the years In the course of the past 100 years, economists and applied statisticians have developed a remarkably diverse variety of income distribution models, yet no single resource convincingly accounts for all of these models, analyzing their strengths and weaknesses, similarities and differences. Statistical Size Distributions in Economics and Actuarial Sciences is the first collection to systematically investigate a wide variety of parametric models that deal with income, wealth, and related notions. Christian Kleiber and Samuel Kotz survey, compliment, compare, and unify all of the disparate models of income distribution, highlighting at times a lack of coordination between them that can result in unnecessary duplication. Considering models from eight languages and all continents, the authors discuss the social and economic implications of each as well as distributions of size of loss in actuarial applications. Specific models covered include: Pareto distributions Lognormal distributions Gamma-type size distributions Beta-type size distributions Miscellaneous size distributions Three appendices provide brief biographies of some of the leading players along with the basic properties of each of the distributions. Actuaries, economists, market researchers, social scientists, and physicists interested in econophysics will find Statistical Size Distributions in Economics and Actuarial Sciences to be a truly one-of-a-kind addition to the professional literature.