The Whys and How of Ultrafast X-ray Science

The Whys and How of Ultrafast X-ray Science

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The invention of ultrafast optical lasers with pulse durations comparable to vibrational periods in solids and motions of molecules undergoing structural changes has provided a look at the dynamics that govern important processes in nature. X-rays, on the other hand, with wave-lengths comparable to the distances between atoms, have been the key tool for the study of the average structure of liquids and solids at atomic resolution. With recent developments in ultrafast x-ray sources, the combination of appropriate temporal resolution and spatial resolution is opening new scientific opportunities for direct observation of atomic-scale dynamics. The Sub-Picosecond Pulse Source at SLAC is just such a source. The science and technology of ultrafast x-ray studies will be discussed in this context, as will the extension of these studies to opportunities afforded by the Linear Coherent Light Source x-ray free-electron laser.


Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays

Author: Bernhard Adams

Publisher: Springer Science & Business Media

Published: 2003-08-31

Total Pages: 364

ISBN-13: 9781402074752

DOWNLOAD EBOOK

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.


Ultrafast X-Ray Science

Ultrafast X-Ray Science

Author: Artem Rudenko

Publisher:

Published: 2019-09-15

Total Pages: 250

ISBN-13: 9783110542615

DOWNLOAD EBOOK

Recent advances of intense short-pulse X-ray sources have created the new field of ultrafast X-ray science, which promises scientific breakthroughs in Physics, Material Sciences and Chemistry. Focusing on the interaction with atoms, molecules and nanoparticles the work describes the basic principles behind novel intense radiation sources and covers nanocrystallography and time-resolved applications as well.


Nanoscale Photonic Imaging

Nanoscale Photonic Imaging

Author: Tim Salditt

Publisher: Springer Nature

Published: 2020-06-09

Total Pages: 634

ISBN-13: 3030344134

DOWNLOAD EBOOK

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.


Ultrafast X-ray Science at the Advanced Light Source

Ultrafast X-ray Science at the Advanced Light Source

Author:

Publisher:

Published: 2000

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

Our scientific understanding of the static or time-averaged structure of condensed matter on the atomic scale has been dramatically advanced by direct structural measurements using x-ray techniques and modern synchrotron sources. Of course the structure of condensed matter is not static, and to understanding the behavior of condensed matter at the most fundamental level requires structural measurements on the time scale on which atoms move. The evolution of condensed-matter structure, via the making and breaking of chemical bonds and the rearrangement of atoms, occurs on the fundamental time scale of a vibrational period, (almost equal to)100 fs. Atomic motion and structural dynamics on this time scale ultimately determine the course of phase transitions in solids, the kinetic pathways of chemical reactions, and even the efficiency and function of biological processes. The integration of x-ray measurement techniques, a high-brightness femtosecond x-ray source, femtosecond lasers, and stroboscopic pump-probe techniques will provide the unique capability to address fundamental scientific questions in solid-state physics, chemistry, AMO physics, and biology involving structural dynamics. In this paper, we review recent work in ultrafast x-ray science at the ALS including time-resolved diffraction measurements and efforts to develop dedicated beamlines for femtosecond x-ray experiments.


Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays

Author: Bernhard Adams

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 348

ISBN-13: 1461503876

DOWNLOAD EBOOK

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.


Lectures on Ultrafast Intense Laser Science 1

Lectures on Ultrafast Intense Laser Science 1

Author: Kaoru Yamanouchi

Publisher: Springer Science & Business Media

Published: 2010-12-17

Total Pages: 322

ISBN-13: 3540959440

DOWNLOAD EBOOK

This book features tutorial-like chapters on ultrafast intense laser science by world-leading scientists who are active in the rapidly developing interdisciplinary research field. It is written to give a comprehensive survey of all the essential aspects of ultrafast intense laser science. The volume covers theories of atoms and molecules in intense laser fields, high intensity physics scaled to long wavelength, pulse shaping techniques, non-linear optics in the XUV region, ultrafast X-ray spectroscopy, quantum emission and applications, filamentation, and ultraintense-laser matter interaction.


Progress in Ultrafast Intense Laser Science

Progress in Ultrafast Intense Laser Science

Author: Kaoru Yamanouchi

Publisher: Springer Science & Business Media

Published: 2013-02-14

Total Pages: 235

ISBN-13: 3642350526

DOWNLOAD EBOOK

The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This ninth volume covers a broad range of topics from this interdisciplinary research field, focusing on ultrafast molecular responses to an intense laser field, advanced techniques for attosecond pulse generation, atomic and molecular responses to attosecond pulses, photoelectron spectroscopy of atoms and molecules interacting with intense light fields, and attosecond pulse interaction with solid materials.