The Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics

The Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics

Author: Georgios Pastras

Publisher: Springer Nature

Published: 2020-10-31

Total Pages: 111

ISBN-13: 3030593851

DOWNLOAD EBOOK

The field of elliptic functions, apart from its own mathematical beauty, has many applications in physics in a variety of topics, such as string theory or integrable systems. This book, which focuses on the Weierstrass theory of elliptic functions, aims at senior undergraduate and junior graduate students in physics or applied mathematics. Supplemented by problems and solutions, it provides a fast, but thorough introduction to the mathematical theory and presents some important applications in classical and quantum mechanics. Elementary applications, such as the simple pendulum, help the readers develop physical intuition on the behavior of the Weierstrass elliptic and related functions, whereas more Interesting and advanced examples, like the n=1 Lamé problem-a periodic potential with an exactly solvable band structure, are also presented.


Introduction To Lagrangian Mechanics, An (2nd Edition)

Introduction To Lagrangian Mechanics, An (2nd Edition)

Author: Alain J Brizard

Publisher: World Scientific Publishing Company

Published: 2014-11-28

Total Pages: 324

ISBN-13: 9814623644

DOWNLOAD EBOOK

An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler-Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.The Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics.New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.


Lectures on Selected Topics in Mathematical Physics

Lectures on Selected Topics in Mathematical Physics

Author: William A. Schwalm

Publisher: Morgan & Claypool Publishers

Published: 2015-12-31

Total Pages: 67

ISBN-13: 1681742306

DOWNLOAD EBOOK

This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.


The Math Book

The Math Book

Author: DK

Publisher: Penguin

Published: 2019-09-03

Total Pages: 711

ISBN-13: 1465494200

DOWNLOAD EBOOK

See how math's infinite mysteries and beauty unfold in this captivating educational book! Discover more than 85 of the most important mathematical ideas, theorems, and proofs ever devised with this beautifully illustrated book. Get to know the great minds whose revolutionary discoveries changed our world today. You don't have to be a math genius to follow along with this book! This brilliant book is packed with short, easy-to-grasp explanations, step-by-step diagrams, and witty illustrations that play with our ideas about numbers. What is an imaginary number? Can two parallel lines ever meet? How can math help us predict the future? All will be revealed and explained in this encyclopedia of mathematics. It's as easy as 1-2-3! The Math Book tells the exciting story of how mathematical thought advanced through history. This diverse and inclusive account will have something for everybody, including the math behind world economies and espionage. This book charts the development of math around the world, from ancient mathematical ideas and inventions like prehistoric tally bones through developments in medieval and Renaissance Europe. Fast forward to today and gain insight into the recent rise of game and group theory. Delve in deeper into the history of math: - Ancient and Classical Periods 6000 BCE - 500 CE - The Middle Ages 500 - 1500 - The Renaissance 1500 - 1680 - The Enlightenment 1680 - 1800 - The 19th Century 1800 - 1900 - Modern Mathematics 1900 - Present The Series Simply Explained With over 7 million copies sold worldwide to date, The Math Book is part of the award-winning Big Ideas Simply Explained series from DK Books. It uses innovative graphics along with engaging writing to make complex subjects easier to understand.


Classical and Quantum Nonlinear Integrable Systems

Classical and Quantum Nonlinear Integrable Systems

Author: A Kundu

Publisher: CRC Press

Published: 2019-04-23

Total Pages: 222

ISBN-13: 0429525044

DOWNLOAD EBOOK

Covering both classical and quantum models, nonlinear integrable systems are of considerable theoretical and practical interest, with applications over a wide range of topics, including water waves, pin models, nonlinear optics, correlated electron systems, plasma physics, and reaction-diffusion processes. Comprising one part on classical theories


The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms

Author: Jan Hendrik Bruinier

Publisher: Springer Science & Business Media

Published: 2008-02-10

Total Pages: 273

ISBN-13: 3540741194

DOWNLOAD EBOOK

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.


Low-Dimensional Applications of Quantum Field Theory

Low-Dimensional Applications of Quantum Field Theory

Author: L. Baulieu

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 374

ISBN-13: 1489919198

DOWNLOAD EBOOK

The Cargese Summer School "Low Dimensional Applications of Quantum Field Theory" was held in July 1995. The School was dedicated to the memory of Claude Itzykson. This session focused on the recent progress in quantum field theory in two dimen sions with a particular emphasis on integrable models and applications of quantum field theory to condensed matter physics. A large fraction of the school was also devoted to a detailed review of the exciting developments in four dimensional super symmetric Yang-Mills theory. The diversity of the topics presented constitute, in our opinion, one of the most attractive features of these proceedings. Some contributions constitute a very thor ough introduction to their subject matter and should be helpful to advanced students in the field while others present entirely new research, not previously published, and should be of considerable interest to the specialist. There were in depth introductory lectures on the application of conformal field theory techniques to disordered systems, on the quantum Hall effect, on quantum in tegrable systems, on the thermodynamic Bethe Ansatz and on the new developments in supersymmetric gauges theories. The computation of the three point function of the Liouville model using conformal bootstrap methods was presented in detail.