In a world where waste incinerators are not an option and landfills are at over capacity, cities are hard pressed to find a solution to the problem of what to do with their solid waste. Handbook of Solid Waste Management, 2/e offers a solution. This handbook offers an integrated approach to the planning, design, and management of economical and environmentally responsible solid waste disposal system. Let twenty industry and government experts provide you with the tools to design a solid waste management system capable of disposing of waste in a cost-efficient and environmentally responsible manner. Focusing on the six primary functions of an integrated system--source reduction, toxicity reduction, recycling and reuse, composting, waste- to-energy combustion, and landfilling--they explore each technology and examine its problems, costs, and legal and social ramifications.
This book presents the application of system analysis techniques with case studies to help readers learn how the techniques can be applied, how the problems are solved, and which sustainable management strategies can be reached.
Solid waste management affects every person in the world. By 2050, the world is expected to increase waste generation by 70 percent, from 2.01 billion tonnes of waste in 2016 to 3.40 billion tonnes of waste annually. Individuals and governments make decisions about consumption and waste management that affect the daily health, productivity, and cleanliness of communities. Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases, increasing respiratory problems, harming animals that consume waste unknowingly, and affecting economic development. Unmanaged and improperly managed waste from decades of economic growth requires urgent action at all levels of society. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 aggregates extensive solid aste data at the national and urban levels. It estimates and projects waste generation to 2030 and 2050. Beyond the core data metrics from waste generation to disposal, the report provides information on waste management costs, revenues, and tariffs; special wastes; regulations; public communication; administrative and operational models; and the informal sector. Solid waste management accounts for approximately 20 percent of municipal budgets in low-income countries and 10 percent of municipal budgets in middle-income countries, on average. Waste management is often under the jurisdiction of local authorities facing competing priorities and limited resources and capacities in planning, contract management, and operational monitoring. These factors make sustainable waste management a complicated proposition; most low- and middle-income countries, and their respective cities, are struggling to address these challenges. Waste management data are critical to creating policy and planning for local contexts. Understanding how much waste is generated—especially with rapid urbanization and population growth—as well as the types of waste generated helps local governments to select appropriate management methods and plan for future demand. It allows governments to design a system with a suitable number of vehicles, establish efficient routes, set targets for diversion of waste, track progress, and adapt as consumption patterns change. With accurate data, governments can realistically allocate resources, assess relevant technologies, and consider strategic partners for service provision, such as the private sector or nongovernmental organizations. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 provides the most up-to-date information available to empower citizens and governments around the world to effectively address the pressing global crisis of waste. Additional information is available at http://www.worldbank.org/what-a-waste.
The collection, transportation and subsequent processing of waste materials is a vast field of study which incorporates technical, social, legal, economic, environmental and regulatory issues. Common waste management practices include landfilling, biological treatment, incineration, and recycling – all boasting advantages and disadvantages. Waste management has changed significantly over the past ten years, with an increased focus on integrated waste management and life-cycle assessment (LCA), with the aim of reducing the reliance on landfill with its obvious environmental concerns in favour of greener solutions. With contributions from more than seventy internationally known experts presented in two volumes and backed by the International Waste Working Group and the International Solid Waste Association, detailed chapters cover: Waste Generation and Characterization Life Cycle Assessment of Waste Management Systems Waste Minimization Material Recycling Waste Collection Mechanical Treatment and Separation Thermal Treatment Biological Treatment Landfilling Special and Hazardous Waste Solid Waste Technology & Management is a balanced and detailed account of all aspects of municipal solid waste management, treatment and disposal, covering both engineering and management aspects with an overarching emphasis on the life-cycle approach.
Life is often considered to be a journey. The lifecycle of waste can similarly be considered to be a journey from the cradle (when an item becomes valueless and, usually, is placed in the dustbin) to the grave (when value is restored by creating usable material or energy; or the waste is transformed into emissions to water or air, or into inert material placed in a landfill). This preface provides a route map for the journey the reader of this book will undertake. Who? Who are the intended readers of this book? Waste managers (whether in public service or private companies) will find a holistic approach for improving the environmental quality and the economic cost of managing waste. The book contains general principles based on cutting edge experience being developed across Europe. Detailed data and a computer model will enable operations managers to develop data-based improvements to their systems. Producers oj waste will be better able to understand how their actions can influence the operation of environmentally improved waste management systems. Designers oj products and packages will be better able to understand how their design criteria can improve the compatibility of their product or package with developing, environmentally improved waste management systems. Waste data specialists (whether in laboratories, consultancies or environ mental managers of waste facilities) will see how the scope, quantity and quality of their data can be improved to help their colleagues design more effective waste management systems.
This book is divided into seven chapters, which address various leachate landfill management issues such as the quality, quantity and management of municipal landfill leachate, together with new methods. There are many methods available for the treatment and management of municipal landfill leachate. The waste management methods presented here can be applied in most third-world countries, due to the lack of waste separation and high organic content of waste. The book provides descriptions and a hierarchy of waste management, reviews the history of solid waste disposal, and covers a range of topics, including: leachate and gas generation in landfills; natural attenuation landfills; landfill site selection; leachate and stormwater management, collection and treatment; landfill gas management; landfill cover requirements; leachate collection; types of natural treatment systems; and design procedure and considerations. In closing, it provides an overview of the current solid waste management status in Iran.
Sustainability is a growing area of research in ecology, economics, environmental science, business, and cultural studies. Specifically, sustainable waste disposal and management is a growing concern as both solid and liquid wastes are rapidly expanding in direct correlation with population growth and improved economic conditions across regions. The Handbook of Research on Waste Management Techniques for Sustainability explores the topic of sustainable development in an era where domestic and municipal waste is becoming a concern for both human and environmental health. Highlighting a number of topics relating to pollution, green initiatives, and waste reduction in both the public and private sector, this research-based publication is designed for use by environmental scientists, business executives, researchers, graduate-level students, and policymakers seeking the latest information on sustainability in business, medicine, agriculture, and society.
Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field. - Provides guidance on how specific food waste characteristics drive possible waste-to-energy conversion processes - Presents methodologies for selecting among different waste-to-energy options, based on waste volumes, distribution and properties, local energy demand (electrical/thermal/steam), opportunities for industrial symbiosis, regulations and incentives and social acceptance, etc. - Contains tools to assess potential environmental and economic performance of deployed systems - Links to publicly available resources on food waste data for energy conversion
Advanced Organic Waste Management: Sustainable Practices and Approaches provides an integrated holistic approach to the challenges associated with organic waste management, particularly related to sustainability, lifecycle assessment, emerging regulations, and novel approaches for resource and energy recovery. In addition to traditional techniques, such as anaerobic digestion, composting, innovative and emerging techniques of waste recycling like hydrothermal carbonization and vermicomposting are included. The book combines the fundamentals and practices of sustainable organic waste management with successful case studies from developed and developing countries, highlighting practical applications and challenges. Sections cover global organic waste generation, encompassing sources and types, composition and characteristics, focus on technical aspects related to various resource recovery techniques like composting and vermicomposting, cover various waste-to-energy technologies, illustrate various environmental management tools for organic waste, present innovative organic waste management practices and strategies complemented by detailed case studies, introduce the circular bioeconomy approach, and more. Presents the fundamentals and practices of sustainable, organic waste management, with emerging regulations and up-to-date analysis on environmental management tools such as lifecycle assessment in a comprehensive manner Offers the latest information on novel concepts and strategies for organic waste management, particularly zero waste and the circular bioeconomy Includes the latest research findings and future perspectives of innovative and emerging techniques of waste recycling, such as hydrothermal carbonization and vermicomposting