Sept.-Oct. issue includes list of theses and dissertations for U.S. and Canadian graduate degrees granted in crop science, soil science, and agronomic science during the previous academic year.
Soil physical measurements are essential for solving many natural resource management problems. This operational laboratory and field handbook provides, for the first time, a standard set of methods that are cost-effective and well suited to land resource survey. It provides: *practical guidelines on the soil physical measurements across a range of soils, climates and land uses; *straightforward descriptions for each method (including common pitfalls) that can be applied by people with a rudimentary knowledge of soil physics, and *guidelines on the interpretation of results and integration with land resource assessment. Soil Physical Measurement And Interpretation for Land Evaluation begins with an introduction to land evaluation and then outlines procedures for field sampling. Twenty detailed chapters cover pore space relations, water retention, hydraulic conductivity, water table depth, dispersion, aggregation, particle size, shrinkage, Atterburg limits and strength. The book includes procedures for estimating soil physical properties from more readily available data and shows how soil physical data can be integrated into land planning and management decisions.
This document presents state-of-the-practice information on the evaluation of soil and rock properties for geotechnical design applications. This document addresses the entire range of materials potentially encountered in highway engineering practice, from soft clay to intact rock and variations of materials that fall between these two extremes. Information is presented on parameters measured, evaluation of data quality, and interpretation of properties for conventional soil and rock laboratory testing, as well as in situ devices such as field vane testing, cone penetration testing, dilatometer, pressuremeter, and borehole jack. This document provides the design engineer with information that can be used to develop a rationale for accepting or rejecting data and for resolving inconsistencies between data provided by different laboratories and field tests. This document also includes information on: (1) the use of Geographical Information Systems (GIS) and Personal Data Assistance devices for the collection and interpretation of subsurface information; (2) quantitative measures for evaluating disturbance of laboratory soil samples; and (3) the use of measurements from geophysical testing techniques to obtain information on the modulus of soil. Also included are chapters on evaluating properties of special soil materials (e.g., loess, cemented sands, peats and organic soils, etc.) and the use of statistical information in evaluating anomalous data and obtaining design values for soil and rock properties. An appendix of three detailed soil and rock property selection examples is provided which illustrate the application of the methods described in the document.
This book summarises the main results of many contributions from researchers worldwide who have used the water infiltration process to characterize soil in the field. Determining soil hydrodynamic properties is essential to interpret and simulate the hydrological processes of economic and environmental interest. This book can be used as a guide to soil hydraulic characterization and in addition it gives a complete description of the treated techniques, including an outline of the most significant research results, with the main points that still needing development and improvement.
Unsaturated Soil Mechanics is the first book to provide a comprehensive introduction to the fundamental principles of unsaturated soil mechanics. * Offers extensive sample problems with an accompanying solutions manual. * Brings together the rapid advances in research in unsaturated soil mechanics in one focused volume. * Covers advances in effective stress and suction and hydraulic conductivity measurement.