The Unprovability of Consistency

The Unprovability of Consistency

Author: George Boolos

Publisher: Cambridge University Press

Published: 2009-01-08

Total Pages: 0

ISBN-13: 9780521092975

DOWNLOAD EBOOK

The Unprovability of Consistency is concerned with connections between two branches of logic: proof theory and modal logic. Modal logic is the study of the principles that govern the concepts of necessity and possibility; proof theory is, in part, the study of those that govern provability and consistency. In this book, George Boolos looks at the principles of provability from the standpoint of modal logic. In doing so, he provides two perspectives on a debate in modal logic that has persisted for at least thirty years between the followers of C. I. Lewis and W. V. O. Quine. The author employs semantic methods developed by Saul Kripke in his analysis of modal logical systems. The book will be of interest to advanced undergraduate and graduate students in logic, mathematics and philosophy, as well as to specialists in those fields.


Formal Theories of Truth

Formal Theories of Truth

Author: J. C. Beall

Publisher: Oxford University Press

Published: 2018

Total Pages: 151

ISBN-13: 0198815670

DOWNLOAD EBOOK

Truth is one of the oldest and most central topics in philosophy. Formal theories explore the connections between truth and logic, and they address truth-theoretic paradoxes such as the Liar. Three leading philosopher-logicians now present a concise overview of the main issues and ideas in formal theories of truth. Beall, Glanzberg, and Ripley explain key logical techniques on which such formal theories rely, providing the formal and logical background needed to develop formal theories of truth. They examine the most important truth-theoretic paradoxes, including the Liar paradoxes. They explore approaches that keep principles of truth simple while relying on nonclassical logic; approaches that preserve classical logic but do so by complicating the principles of truth; and approaches based on substructural logics that change the shape of the target consequence relation itself. Finally, inconsistency and revision theories are reviewed, and contrasted with the approaches previously discussed. For any reader who has a basic grounding in logic, this book offers an ideal guide to formal theories of truth.


The Logic of Provability

The Logic of Provability

Author: George Boolos

Publisher: Cambridge University Press

Published: 1995-04-28

Total Pages: 318

ISBN-13: 9780521483254

DOWNLOAD EBOOK

Boolos, a pre-eminent philosopher of mathematics, investigates the relationship between provability and modal logic.


An Introduction to Gödel's Theorems

An Introduction to Gödel's Theorems

Author: Peter Smith

Publisher: Cambridge University Press

Published: 2007-07-26

Total Pages: 376

ISBN-13: 1139465937

DOWNLOAD EBOOK

In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.


Computability and Logic

Computability and Logic

Author: George S. Boolos

Publisher: Cambridge University Press

Published: 2007-09-17

Total Pages: 365

ISBN-13: 0521877520

DOWNLOAD EBOOK

This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.


Incompleteness

Incompleteness

Author: Rebecca Goldstein

Publisher: W. W. Norton & Company

Published: 2006-01-31

Total Pages: 299

ISBN-13: 0393327604

DOWNLOAD EBOOK

"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.


An Introduction to Gödel's Theorems

An Introduction to Gödel's Theorems

Author: Peter Smith

Publisher: Cambridge University Press

Published: 2013-02-21

Total Pages: 405

ISBN-13: 1107022843

DOWNLOAD EBOOK

A clear and accessible treatment of Gödel's famous, intriguing, but much misunderstood incompleteness theorems, extensively revised in a second edition.


Gödel's Theorem

Gödel's Theorem

Author: Torkel Franzén

Publisher: CRC Press

Published: 2005-06-06

Total Pages: 182

ISBN-13: 1439876924

DOWNLOAD EBOOK

"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel


Gödel's Incompleteness Theorems

Gödel's Incompleteness Theorems

Author: Raymond M. Smullyan

Publisher: Oxford University Press, USA

Published: 1992

Total Pages: 156

ISBN-13: 0195046722

DOWNLOAD EBOOK

An introduction to the work of the mathematical logician Kurt Godel, which guides the reader through his Theorem of Undecidability and his theories on the completeness of logic, the incompleteness of numbers and the consistency of the axiom of choice.