The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds

The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds

Author: Martin Lübke

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 112

ISBN-13: 0821839136

DOWNLOAD EBOOK

We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds, and we discuss differential geometric properties of the corresponding moduli spaces. This correspondence refers to moduli spaces of ``universal holomorphic oriented pairs''. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems) are special cases of this universal classification problem. Our Kobayashi-Hitchin correspondence relates the complex geometric concept ``polystable oriented holomorphic pair'' to the existence of a reduction solving a generalized Hermitian-Einstein equation. The proof is based on the Uhlenbeck-Yau continuity method. Using ideas from Donaldson theory, we further introduce and investigate canonical Hermitian metrics on such moduli spaces. We discuss in detail remarkable classes of moduli spaces in the non-Kahlerian framework: Oriented holomorphic structures, Quot-spaces, oriented holomorphic pairs and oriented vortices, non-abelian Seiberg-Witten monopoles.


Analysis, Complex Geometry, and Mathematical Physics

Analysis, Complex Geometry, and Mathematical Physics

Author: Paul M. N. Feehan

Publisher: American Mathematical Soc.

Published: 2015-07-21

Total Pages: 388

ISBN-13: 1470414643

DOWNLOAD EBOOK

This volume contains the proceedings of the Conference on Analysis, Complex Geometry and Mathematical Physics: In Honor of Duong H. Phong, which was held from May 7-11, 2013, at Columbia University, New York. The conference featured thirty speakers who spoke on a range of topics reflecting the breadth and depth of the research interests of Duong H. Phong on the occasion of his sixtieth birthday. A common thread, familiar from Phong's own work, was the focus on the interplay between the deep tools of analysis and the rich structures of geometry and physics. Papers included in this volume cover topics such as the complex Monge-Ampère equation, pluripotential theory, geometric partial differential equations, theories of integral operators, integrable systems and perturbative superstring theory.


Geometric Invariant Theory and Decorated Principal Bundles

Geometric Invariant Theory and Decorated Principal Bundles

Author: Alexander H. W. Schmitt

Publisher: European Mathematical Society

Published: 2008

Total Pages: 404

ISBN-13: 9783037190654

DOWNLOAD EBOOK

The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the universal Kobayashi-Hitchin correspondence, these moduli spaces are related to moduli spaces of solutions of certain vortex type equations. Potential applications include the study of representation spaces of the fundamental group of compact Riemann surfaces. The book concludes with a brief discussion of generalizations of these findings to higher dimensional base varieties, positive characteristic, and parabolic bundles. The text is fairly self-contained (e.g., the necessary background from the theory of principal bundles is included) and features numerous examples and exercises. It addresses students and researchers with a working knowledge of elementary algebraic geometry.


The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra

The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra

Author: Michael Kapovich

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 98

ISBN-13: 0821840541

DOWNLOAD EBOOK

In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.


Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points

Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points

Author: Robert M. Guralnick

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 142

ISBN-13: 0821839926

DOWNLOAD EBOOK

Considers indecomposable degree $n$ covers of Riemann surfaces with monodromy group an alternating or symmetric group of degree $d$. The authors show that if the cover has five or more branch points then the genus grows rapidly with $n$ unless either $d = n$ or the curves have genus zero, there are precisely five branch points and $n =d(d-1)/2$.


Invariant Differential Operators for Quantum Symmetric Spaces

Invariant Differential Operators for Quantum Symmetric Spaces

Author: Gail Letzter

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 104

ISBN-13: 0821841319

DOWNLOAD EBOOK

This paper studies quantum invariant differential operators for quantum symmetric spaces in the maximally split case. The main results are quantum versions of theorems of Harish-Chandra and Helgason: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and the ring of invariants of a certain Laurent polynomial ring under an action of the restricted Weyl group. Moreover, the image of the center under this map is the entire invariant ring if and only if the underlying irreducible symmetric pair is not of four exceptional types. In the process, the author finds a particularly nice basis for the quantum invariant differential operators that provides a new interpretation of difference operators associated to Macdonald polynomials.


Complicial Sets Characterising the Simplicial Nerves of Strict $\omega $-Categories

Complicial Sets Characterising the Simplicial Nerves of Strict $\omega $-Categories

Author: Dominic Verity

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 208

ISBN-13: 0821841424

DOWNLOAD EBOOK

The primary purpose of this work is to characterise strict $\omega$-categories as simplicial sets with structure. The author proves the Street-Roberts conjecture in the form formulated by Ross Street in his work on Orientals, which states that they are exactly the ``complicial sets'' defined and named by John Roberts in his handwritten notes of that title (circa 1978). On the way the author substantially develops Roberts' theory of complicial sets itself and makes contributions to Street's theory of parity complexes. In particular, he studies a new monoidal closed structure on the category of complicial sets which he shows to be the appropriate generalisation of the (lax) Gray tensor product of 2-categories to this context. Under Street's $\omega$-categorical nerve construction, which the author shows to be an equivalence, this tensor product coincides with those of Steiner, Crans and others.


Semisolvability of Semisimple Hopf Algebras of Low Dimension

Semisolvability of Semisimple Hopf Algebras of Low Dimension

Author: Sonia Natale

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 138

ISBN-13: 0821839489

DOWNLOAD EBOOK

The author proves that every semisimple Hopf algebra of dimension less than $60$ over an algebraically closed field $k$ of characteristic zero is either upper or lower semisolvable up to a cocycle twist.


Entropy and Multivariable Interpolation

Entropy and Multivariable Interpolation

Author: Gelu Popescu

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 98

ISBN-13: 0821839128

DOWNLOAD EBOOK

We define a new notion of entropy for operators on Fock spaces and positive multi-Toeplitz kernels on free semigroups. This is studied in connection with factorization theorems for (e.g., multi-Toeplitz, multi-analytic, etc.) operators on Fock spaces. These results lead to entropy inequalities and entropy formulas for positive multi-Toeplitz kernels on free semigroups (resp. multi-analytic operators) and consequences concerning the extreme points of the unit ball of the noncommutative analytic Toeplitz algebra $F ninfty$. We obtain several geometric characterizations of the central intertwining lifting, a maximal principle, and a permanence principle for the noncommutative commutant lifting theorem. Under certain natural conditions, we find explicit forms for the maximal entropy solution of this multivariable commutant lifting theorem. All these results are used to solve maximal entropy interpolation problems in several variables. We obtain explicit forms for the maximal entropy solution (as well as its entropy) of the Sarason, Caratheodory-Schur, and Nevanlinna-Pick type interpolation problems for the noncommutative (resp. commutative) analytic Toeplitz algebra $F ninfty$ (resp. $W ninfty$) and their tensor products with $B({\mathcal H , {\mathcal K )$. In particular, we provide explicit forms for the maximal entropy solutions of several interpolation problems on the unit ball of $\mathbb{C n$.


Torus Fibrations, Gerbes, and Duality

Torus Fibrations, Gerbes, and Duality

Author: Ron Donagi

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 104

ISBN-13: 0821840924

DOWNLOAD EBOOK

Let $X$ be a smooth elliptic fibration over a smooth base $B$. Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an $\mathcal{O} DEGREES{\times}$ gerbe over a genus one fibration which is a twisted form