This book describes the main WMO activities in the 1990s and the link-up with the new century, and summarizes the achievements in the WMO programs set out in the WMO long-term plans, which were approved by the Eleventh, Twelfth and Thirteenth World Meteorological Congresses in 1991, 1995 and 1999.--Publisher's description.
The TOGA (Tropical Ocean and Global Atmosphere) Program was designed to study short-term climate variations. A 10-year international program, TOGA made El Nino a household word. This book chronicles the cooperative efforts of oceanographers and meteorologists, several U.S. government agencies, many other nations, and international scientific organizations to study El Nino and the Southern Oscillation (ENSO). It describes the progression from being unable to detect the development of large climate variations to being able to make and use rudimentary climate predictions, especially for some tropical countries. It examines the development of the TOGA Program, evaluates its accomplishments, describes U.S. participation in the program, and makes general recommendations for developing better understanding and predictions of climate variations on seasonal to interannual time scales.
This book contains tutorial and review articles as well as specific research letters that cover a wide range of topics: (1) dynamics of atmospheric variability from both basic theory and data analysis, (2) physical and mathematical problems in climate modeling and numerical weather prediction, (3) theories of atmospheric radiative transfer and their applications in satellite remote sensing, and (4) mathematical and statistical methods. The book can be used by undergraduates or graduate students majoring in atmospheric sciences, as an introduction to various research areas; and by researchers and educators, as a general review or quick reference in their fields of interest.
Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships’ wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography – the near-surface layer of the ocean.