This classic account stresses the role of time-scales in determining the nature and extent of state space, an approach that makes clear the unity of classical, kinetic, statistical, and process thermodynamics. "Superb....It has no equal....Should be read by anyone who wants to understand what thermodynamics--regarded as a branch of physics--is all about....No one concerned with thermodynamics, and not merely that of fluid systems, can afford to be without this book, be he undergraduate student, graduate student or research worker."--Journal of Fluid Mechanics
This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.
A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design. Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer’s catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process. Key Features: Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design Practical rules-of-thumb are included in the text as ‘Practical Notes’ to underline their importance in current practice and provide additional information Includes an instructor’s manual hosted on the book’s companion website
Published under the asspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the need of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydroncarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commericial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.
This survey of thermal systems engineering combines coverage of thermodynamics, fluid flow, and heat transfer in one volume. Developed by leading educators in the field, this book sets the standard for those interested in the thermal-fluids market. Drawing on the best of what works from market leading texts in thermodynamics (Moran), fluids (Munson) and heat transfer (Incropera), this book introduces thermal engineering using a systems focus, introduces structured problem-solving techniques, and provides applications of interest to all engineers.
This text is concerned with the methods in which different types of energy are converted from one form to another. In particular, the book examines why so many of the energy conversion processes which involve heat have a low efficiency rating.
This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.
This text explores the connections between different thermodynamic subjects related to fluid systems. In an innovative way, it covers the subject from first principles to the state of the art in fundamental and applied topics. Using simple nomenclature and algebra, it clarifies concepts by returning to the conceptual foundation of thermodynamics. The structural elements of classical and molecular thermodynamics of fluid systems presented cover, via examples and references, both the usefulness and the limitations of thermodynamics for the treatment of practical problems. This new edition explores recent advances in statistical associated fluid theories and contains creative end‐of‐chapter problems connecting the theory with real‐life situations. It includes new chapters on thermodynamics of polymer solutions and molecular thermodynamics and also presents advances in the study of the activity of individual ions. Provides a concise structure of concepts, using simple nomenclature and algebra Clarifies problems usually overlooked by standard texts Features end‐of‐chapter problems to enhance the reader’s understanding of the concepts Includes diverse topics of interest to researchers and advanced students, including elements of statistical thermodynamics, models of solutions, statistical associated fluid theory and the activity of individual ions Offers four appendices giving step‐by‐step procedures and parameters for direct use of the PRSV equation of state and the ASOG‐KT group method for fugacity and activity coefficient calculations Features a complete set of solutions to problems throughout the book, available for download on the book’s webpage under "Support Material" This textbook is written for advanced undergraduate and graduate students studying chemical engineering and chemistry as well as for practicing engineers and researchers.
Introduction to Thermal and Fluid Engineering combines coverage of basic thermodynamics, fluid mechanics, and heat transfer for a one- or two-term course for a variety of engineering majors. The book covers fundamental concepts, definitions, and models in the context of engineering examples and case studies. It carefully explains the methods used t