The Thermoballistic Transport Model

The Thermoballistic Transport Model

Author: Reinhard Lipperheide

Publisher: Springer

Published: 2014-05-09

Total Pages: 158

ISBN-13: 3319059246

DOWNLOAD EBOOK

The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detail and specific examples of interest to current research in semiconductor physics and spintronics are worked out.


Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices

Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices

Author: Joao B. Sousa

Publisher: William Andrew

Published: 2021-03-23

Total Pages: 485

ISBN-13: 0323461247

DOWNLOAD EBOOK

Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices offers a pragmatic view on transport phenomena for micro- and nanoscale materials and devices, both as a research tool and as a means to implant new functions in materials. Chapters emphasize transport properties (TP) as a research tool at the micro/nano level and give an experimental view on underlying techniques. The relevance of TP is highlighted through the interplay between a micro/nanocarrier's characteristics and media characteristics: long/short-range order and disorder excitations, couplings, and in energy conversions. Later sections contain case studies on the role of transport properties in functional nanomaterials. This includes transport in thin films and nanostructures, from nanogranular films, to graphene and 2D semiconductors and spintronics, and from read heads, MRAMs and sensors, to nano-oscillators and energy conversion, from figures of merit, micro-coolers and micro-heaters, to spincaloritronics. - Presents a pragmatic description of electrical transport phenomena in micro- and nanoscale materials and devices from an experimental viewpoint - Provides an in-depth overview of the experimental techniques available to measure transport phenomena in micro- and nanoscale materials - Features case studies to illustrate how each technique works - Highlights emerging areas of interest in micro- and nanomaterial transport phenomena, including spintronics


Introduction to Space Charge Effects in Semiconductors

Introduction to Space Charge Effects in Semiconductors

Author: Karl W. Böer

Publisher: Springer Science & Business Media

Published: 2009-12-03

Total Pages: 337

ISBN-13: 3642022367

DOWNLOAD EBOOK

Describing space-charge effects in semiconductors, this text moves from basic principles to advanced application in semiconducting devices. It uses detailed analyses of the transport, Poisson, and continuity equations to show the behavior of solution curves.


Ram Accelerators

Ram Accelerators

Author: Kazuyoshi Takayama

Publisher: Springer

Published: 2012-03-29

Total Pages: 0

ISBN-13: 9783642468780

DOWNLOAD EBOOK

Ram accelerators are among the most advanced tools for generating fluid dynamcis data in supersonic reacting systems. They require the combined action of combustion, wave systems and turbulence and are still a serious challenge for physicists and engineers. This book will serve as an introductionary textbook on ram accelerators and gives a thorough overview on research activities, performance modeling and high-pressure detonation dynamics.


Physics of Semiconductors

Physics of Semiconductors

Author: Wolfgang Jantsch

Publisher: American Institute of Physics

Published: 2007-04-30

Total Pages: 774

ISBN-13:

DOWNLOAD EBOOK

This book features peer-reviewed papers that were presented at the 28th International Conference on the Physics of Semiconductors. This biannual conference presents and discusses all important developments and outstanding recent results in the field of semiconductor physics: one of the most important disciplines in solid state physics. Semiconductor physics provides the scientific basis for the microelectronic device industry.


Innovations in Materials Manufacturing, Fabrication, and Environmental Safety

Innovations in Materials Manufacturing, Fabrication, and Environmental Safety

Author: Mel Schwartz

Publisher: CRC Press

Published: 2010-11-24

Total Pages: 782

ISBN-13: 1420082167

DOWNLOAD EBOOK

When people make a call on a cellphone, drive a car, or turn on a computer, few truly appreciate the innovations in material selection, technology, and fabrication that were required to make it all possible. Innovations in Materials Manufacturing, Fabrication, and Environmental Safety explores expected developments in analysis, design, testing, and


Geophysical Inverse Theory

Geophysical Inverse Theory

Author: Robert L. Parker

Publisher: Princeton University Press

Published: 2019-12-31

Total Pages: 400

ISBN-13: 069120683X

DOWNLOAD EBOOK

In many physical sciences, the most natural description of a system is with a function of position or time. In principle, infinitely many numbers are needed to specify that function, but in practice only finitely many measurements can be made. Inverse theory concerns the mathematical techniques that enable researchers to use the available information to build a model of the unknown system or to determine its essential properties. In Geophysical Inverse Theory, Robert Parker provides a systematic development of inverse theory at the graduate and professional level that emphasizes a rigorous yet practical solution of inverse problems, with examples from experimental observations in geomagnetism, seismology, gravity, electromagnetic sounding, and interpolation. Although illustrated with examples from geophysics, this book has broad implications for researchers in applied disciplines from materials science and engineering to astrophysics, oceanography, and meteorology. Parker's approach is to avoid artificial statistical constructs and to emphasize instead the reasonable assumptions researchers must make to reduce the ambiguity that inevitably arises in complex problems. The structure of the book follows a natural division in the subject into linear theory, in which the measured quantities are linear functionals of the unknown models, and nonlinear theory, which covers all other systems but is not nearly so well understood. The book covers model selection as well as techniques for drawing firm conclusions about the earth independent of any particular model.