Fundamentals of Materials Science

Fundamentals of Materials Science

Author: Eric J. Mittemeijer

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 754

ISBN-13: 3030600564

DOWNLOAD EBOOK

This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.


The Theory of Transformations in Metals and Alloys

The Theory of Transformations in Metals and Alloys

Author: John Christian

Publisher: Newnes

Published: 2002-12-10

Total Pages: 1202

ISBN-13: 0080542778

DOWNLOAD EBOOK

This work is a classic reference text for metallurgists, material scientists and crystallographers. The first edition was published in 1965. The first part of that edition was revised and re-published in 1975 and again in 1981. The present two-part set represents the eagerly awaited full revision by the author of his seminal work, now published as Parts I and II. Professor Christian was one of the founding fathers of materials science and highly respected worldwide. The new edition of his book deserves a place on the bookshelf of every materials science and engineering department. Suitable thermal and mechanical treatments will produce extensive rearrangements of the atoms in metals and alloys, and corresponding marked variations in physical and chemical properties. This book describes how such changes in the atomic configuration are effected, and discusses the associated kinetic and crystallographic features. It deals with areas such as lattice geometry, point defects, dislocations, stacking faults, grain and interphase boundaries, solid solutions, diffusion, etc. The first part covers the general theory while the second part is concerned with descriptions of specific types of transformations.


Progress in Materials Science and Engineering

Progress in Materials Science and Engineering

Author: Carlos Brebbia

Publisher: Springer

Published: 2018-05-07

Total Pages: 203

ISBN-13: 3319753401

DOWNLOAD EBOOK

This book presents recent advances made in materials science and engineering within Russian academia, particularly groups working in the Ural Federal University District. Topics explored in this volume include structure formation analysis of complicated alloys, non-ferrous metals metallurgy, composite composed materials science, and high-pressure treatment of metals and alloys. The finding discussed in this volume are to critical to multiple industries including manufacturing, structural materials, oil and gas, coatings, and metal fabrication.


Solder Joint Technology

Solder Joint Technology

Author: King-Ning Tu

Publisher: Springer Science & Business Media

Published: 2007-07-27

Total Pages: 376

ISBN-13: 0387388923

DOWNLOAD EBOOK

The European Union’s directive banning the use of lead-based (Pb) solders in electronic consumer products has created an urgent need for research on solder joint behavior under various driving forces in electronic manufacturing, and for development of lead-free solders. This book provides a comprehensive examination of advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints, and presents methods for preventing common reliablity problems.


Metal Matrix Composites

Metal Matrix Composites

Author: G. Chadwick

Publisher: Elsevier

Published: 1991-07-24

Total Pages: 316

ISBN-13: 0444596704

DOWNLOAD EBOOK

The 53 papers in this volume cover the topics of Metal Matrix Composites production routes, aspects of interfacial thermodynamics and kinetics, mechanical and physical properties, post-production processing, and applications. The contributions provide a valuable insight into the current trends in the use of metal matrix composites.