Theory of Transformation Groups I

Theory of Transformation Groups I

Author: Sophus Lie

Publisher: Springer

Published: 2015-03-12

Total Pages: 640

ISBN-13: 3662462117

DOWNLOAD EBOOK

This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen I” will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.


Transformation Groups and Algebraic K-Theory

Transformation Groups and Algebraic K-Theory

Author: Wolfgang Lück

Publisher: Springer

Published: 2006-11-14

Total Pages: 455

ISBN-13: 3540468277

DOWNLOAD EBOOK

The book focuses on the relation between transformation groups and algebraic K-theory. The general pattern is to assign to a geometric problem an invariant in an algebraic K-group which determines the problem. The algebraic K-theory of modules over a category is studied extensively and appplied to the fundamental category of G-space. Basic details of the theory of transformation groups sometimes hard to find in the literature, are collected here (Chapter I) for the benefit of graduate students. Chapters II and III contain advanced new material of interest to researchers working in transformation groups, algebraic K-theory or related fields.


Transformation Groups

Transformation Groups

Author: Tammo tom Dieck

Publisher: Walter de Gruyter

Published: 2011-04-20

Total Pages: 325

ISBN-13: 3110858371

DOWNLOAD EBOOK

“This book is a jewel – it explains important, useful and deep topics in Algebraic Topology that you won’t find elsewhere, carefully and in detail.” Prof. Günter M. Ziegler, TU Berlin


Cohomological Methods in Transformation Groups

Cohomological Methods in Transformation Groups

Author: C. Allday

Publisher: Cambridge University Press

Published: 1993-07

Total Pages: 486

ISBN-13: 0521350220

DOWNLOAD EBOOK

This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.


Transformation Groups in Differential Geometry

Transformation Groups in Differential Geometry

Author: Shoshichi Kobayashi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 192

ISBN-13: 3642619819

DOWNLOAD EBOOK

Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.


Transformation Groups for Beginners

Transformation Groups for Beginners

Author: Sergeĭ Vasilʹevich Duzhin

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 258

ISBN-13: 0821836439

DOWNLOAD EBOOK

Presents a discussion of algebraic operations on the points in the plane and rigid motions in the Euclidean plane. This work introduces the notions of a transformation group and of an abstract group. It gives an elementary exposition of the basic ideas of Sophus Lie about symmetries of differential equations.


Cohomology Theory of Topological Transformation Groups

Cohomology Theory of Topological Transformation Groups

Author: W.Y. Hsiang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 175

ISBN-13: 3642660525

DOWNLOAD EBOOK

Historically, applications of algebraic topology to the study of topological transformation groups were originated in the work of L. E. 1. Brouwer on periodic transformations and, a little later, in the beautiful fixed point theorem ofP. A. Smith for prime periodic maps on homology spheres. Upon comparing the fixed point theorem of Smith with its predecessors, the fixed point theorems of Brouwer and Lefschetz, one finds that it is possible, at least for the case of homology spheres, to upgrade the conclusion of mere existence (or non-existence) to the actual determination of the homology type of the fixed point set, if the map is assumed to be prime periodic. The pioneer result of P. A. Smith clearly suggests a fruitful general direction of studying topological transformation groups in the framework of algebraic topology. Naturally, the immediate problems following the Smith fixed point theorem are to generalize it both in the direction of replacing the homology spheres by spaces of more general topological types and in the direction of replacing the group tl by more general compact groups.


Transformation Groups Applied to Mathematical Physics

Transformation Groups Applied to Mathematical Physics

Author: Nail H. Ibragimov

Publisher: Springer Science & Business Media

Published: 2001-11-30

Total Pages: 422

ISBN-13: 9781402003394

DOWNLOAD EBOOK

Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R.van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in - gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in pack ing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.