The Theory of Jacobi Forms

The Theory of Jacobi Forms

Author: Martin Eichler

Publisher: Springer Science & Business Media

Published: 2013-12-14

Total Pages: 156

ISBN-13: 1468491628

DOWNLOAD EBOOK

The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z) (1) ((cT+d) e cp(T, z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T, z) 2: c(n, r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl( -r, z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form.


Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

Author: Hatice Boylan

Publisher: Springer

Published: 2014-12-05

Total Pages: 150

ISBN-13: 3319129163

DOWNLOAD EBOOK

The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.


Elements of the Representation Theory of the Jacobi Group

Elements of the Representation Theory of the Jacobi Group

Author: Rolf Berndt

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 225

ISBN-13: 303480282X

DOWNLOAD EBOOK

Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.


The Moduli Space of Curves

The Moduli Space of Curves

Author: Robert H. Dijkgraaf

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 570

ISBN-13: 1461242649

DOWNLOAD EBOOK

The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.


Harmonic Maass Forms and Mock Modular Forms: Theory and Applications

Harmonic Maass Forms and Mock Modular Forms: Theory and Applications

Author: Kathrin Bringmann

Publisher: American Mathematical Soc.

Published: 2017-12-15

Total Pages: 409

ISBN-13: 1470419440

DOWNLOAD EBOOK

Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.


The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms

Author: Jan Hendrik Bruinier

Publisher: Springer Science & Business Media

Published: 2008-02-10

Total Pages: 273

ISBN-13: 3540741194

DOWNLOAD EBOOK

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.


Modular Forms and Related Topics in Number Theory

Modular Forms and Related Topics in Number Theory

Author: B. Ramakrishnan

Publisher: Springer Nature

Published: 2020-11-24

Total Pages: 240

ISBN-13: 9811587191

DOWNLOAD EBOOK

This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.


Problems in the Theory of Modular Forms

Problems in the Theory of Modular Forms

Author: M. Ram Murty

Publisher: Springer

Published: 2016-11-25

Total Pages: 293

ISBN-13: 9811026513

DOWNLOAD EBOOK

This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field.


Some Applications of Modular Forms

Some Applications of Modular Forms

Author: Peter Sarnak

Publisher: Cambridge University Press

Published: 1990-11-15

Total Pages: 124

ISBN-13: 1316582442

DOWNLOAD EBOOK

The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.


Modular Forms

Modular Forms

Author: Henri Cohen

Publisher: American Mathematical Soc.

Published: 2017-08-02

Total Pages: 714

ISBN-13: 0821849476

DOWNLOAD EBOOK

The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and “fun” subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin–Lehner–Li theory of newforms and including the theory of Eisenstein series, Rankin–Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacobi, Maass, and Siegel modular forms. Some “gems” of the book are an immediately implementable trace formula for Hecke operators, generalizations of Haberland's formulas for the computation of Petersson inner products, W. Li's little-known theorem on the diagonalization of the full space of modular forms, and explicit algorithms due to the second author for computing Maass forms. This book is essentially self-contained, the necessary tools such as gamma and Bessel functions, Bernoulli numbers, and so on being given in a separate chapter.