The Steiner Ratio

The Steiner Ratio

Author: Dietmar Cieslik

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 247

ISBN-13: 1475767986

DOWNLOAD EBOOK

Steiner's Problem concerns finding a shortest interconnecting network for a finite set of points in a metric space. A solution must be a tree, which is called a Steiner Minimal Tree (SMT), and may contain vertices different from the points which are to be connected. Steiner's Problem is one of the most famous combinatorial-geometrical problems, but unfortunately it is very difficult in terms of combinatorial structure as well as computational complexity. However, if only a Minimum Spanning Tree (MST) without additional vertices in the interconnecting network is sought, then it is simple to solve. So it is of interest to know what the error is if an MST is constructed instead of an SMT. The worst case for this ratio running over all finite sets is called the Steiner ratio of the space. The book concentrates on investigating the Steiner ratio. The goal is to determine, or at least estimate, the Steiner ratio for many different metric spaces. The author shows that the description of the Steiner ratio contains many questions from geometry, optimization, and graph theory. Audience: Researchers in network design, applied optimization, and design of algorithms.


The Steiner Tree Problem

The Steiner Tree Problem

Author: F.K. Hwang

Publisher: Elsevier

Published: 1992-10-20

Total Pages: 353

ISBN-13: 0080867936

DOWNLOAD EBOOK

The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues.This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging.The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole.


Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics

Author: Teofilo F. Gonzalez

Publisher: CRC Press

Published: 2007-05-15

Total Pages: 1434

ISBN-13: 1420010743

DOWNLOAD EBOOK

Delineating the tremendous growth in this area, the Handbook of Approximation Algorithms and Metaheuristics covers fundamental, theoretical topics as well as advanced, practical applications. It is the first book to comprehensively study both approximation algorithms and metaheuristics. Starting with basic approaches, the handbook presents the methodologies to design and analyze efficient approximation algorithms for a large class of problems, and to establish inapproximability results for another class of problems. It also discusses local search, neural networks, and metaheuristics, as well as multiobjective problems, sensitivity analysis, and stability. After laying this foundation, the book applies the methodologies to classical problems in combinatorial optimization, computational geometry, and graph problems. In addition, it explores large-scale and emerging applications in networks, bioinformatics, VLSI, game theory, and data analysis. Undoubtedly sparking further developments in the field, this handbook provides the essential techniques to apply approximation algorithms and metaheuristics to a wide range of problems in computer science, operations research, computer engineering, and economics. Armed with this information, researchers can design and analyze efficient algorithms to generate near-optimal solutions for a wide range of computational intractable problems.


Computing in Euclidean Geometry

Computing in Euclidean Geometry

Author: Dingzhu Du

Publisher: World Scientific

Published: 1992

Total Pages: 414

ISBN-13: 9789810209667

DOWNLOAD EBOOK

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. The topics covered are: a history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra; triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and steiner trees. Each chapter is written by a leading expert in the field and together they provide a clear and authoritative picture of what computational Euclidean geometry is and the direction in which research is going.


Steiner Minimal Trees

Steiner Minimal Trees

Author: Dietmar Cieslik

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 327

ISBN-13: 1475765851

DOWNLOAD EBOOK

The problem of "Shortest Connectivity", which is discussed here, has a long and convoluted history. Many scientists from many fields as well as laymen have stepped on its stage. Usually, the problem is known as Steiner's Problem and it can be described more precisely in the following way: Given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which are to be connected. Such points are called Steiner points. Steiner's Problem seems disarmingly simple, but it is rich with possibilities and difficulties, even in the simplest case, the Euclidean plane. This is one of the reasons that an enormous volume of literature has been published, starting in 1 the seventeenth century and continuing until today. The difficulty is that we look for the shortest network overall. Minimum span ning networks have been well-studied and solved eompletely in the case where only the given points must be connected. The novelty of Steiner's Problem is that new points, the Steiner points, may be introduced so that an intercon necting network of all these points will be shorter. This also shows that it is impossible to solve the problem with combinatorial and geometric methods alone.


Handbook of Combinatorial Optimization

Handbook of Combinatorial Optimization

Author: Ding-Zhu Du

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 650

ISBN-13: 1475730233

DOWNLOAD EBOOK

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).


Computing in Euclidean Geometry

Computing in Euclidean Geometry

Author: Ding-Zhu Du

Publisher: World Scientific

Published: 1995

Total Pages: 520

ISBN-13: 9789810218768

DOWNLOAD EBOOK

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.


Mathematical Theory of Optimization

Mathematical Theory of Optimization

Author: Ding-Zhu Du

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 277

ISBN-13: 1475757956

DOWNLOAD EBOOK

This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.


Approximation and Complexity in Numerical Optimization

Approximation and Complexity in Numerical Optimization

Author: Panos M. Pardalos

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 597

ISBN-13: 1475731450

DOWNLOAD EBOOK

There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida.


Minimal NetworksThe Steiner Problem and Its Generalizations

Minimal NetworksThe Steiner Problem and Its Generalizations

Author: Alexander O. Ivanov

Publisher: CRC Press

Published: 1994-03-16

Total Pages: 440

ISBN-13: 9780849386428

DOWNLOAD EBOOK

This book focuses on the classic Steiner Problem and illustrates how results of the problem's development have generated the Theory of Minimal Networks, that is systems of "rubber" branching threads of minimal length. This theory demonstrates a brilliant interconnection among differential and computational geometry, topology, variational calculus, and graph theory. All necessary preliminary information is included, and the book's simplified format and nearly 150 illustrations and tables will help readers develop a concrete understanding of the material. All nontrivial statements are proved, and plenty of exercises are included.