Selected Works of Phillip A. Griffiths with Commentary

Selected Works of Phillip A. Griffiths with Commentary

Author: Phillip Griffiths

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 816

ISBN-13: 9780821820872

DOWNLOAD EBOOK

Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.


Collected Papers of John Milnor

Collected Papers of John Milnor

Author: John Willard Milnor

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 323

ISBN-13: 0821848755

DOWNLOAD EBOOK

This volume contains papers of one of the best modern geometers and topologists, John Milnor, on various topics related to the notion of the fundamental group. The volume contains sixteen papers divided into four parts: Knot theory, Free actions on spheres, Torsion, and Three-dimensional manifolds. Each part is preceded by an introduction containing the author's comments on further development of the subject. Although some of the papers were written quite a while ago, they appear more modern than many of today's publications. Milnor's excellent, clear, and laconic style makes the book a real treat. This volume is highly recommended to a broad mathematical audience, and, in particular, to young mathematicians who will certainly benefit from their acquaintance with Milnor's mode of thinking and writing.


Mathematics as Metaphor

Mathematics as Metaphor

Author: I͡U. I. Manin

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 258

ISBN-13: 0821843311

DOWNLOAD EBOOK

Includes essays that are grouped in three parts: Mathematics; Mathematics and Physics; and, Language, Consciousness, and Book reviews. This book is suitable for those interested in the philosophy and history of mathematics, physics, and linguistics.


Introduction to Algebraic Curves

Introduction to Algebraic Curves

Author: Phillip A. Griffiths

Publisher: American Mathematical Soc.

Published: 1989

Total Pages: 225

ISBN-13: 9780821845370

DOWNLOAD EBOOK

This book differs from a number of recent books on this subject in that it combines analytic and geometric methods at the outset, so that the reader can grasp the basic results of the subject. Although such modern techniques of sheaf theory, cohomology, and commutative algebra are not covered here, the book provides a solid foundation to proceed to more advanced texts in general algebraic geometry, complex manifolds, and Riemann surfaces, as well as algebraic curves. Containing numerous exercises this book would make an excellent introductory text.


Principles of Algebraic Geometry

Principles of Algebraic Geometry

Author: Phillip Griffiths

Publisher: John Wiley & Sons

Published: 2014-08-21

Total Pages: 837

ISBN-13: 111862632X

DOWNLOAD EBOOK

A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.


Exterior Differential Systems

Exterior Differential Systems

Author: Robert L. Bryant

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 483

ISBN-13: 1461397146

DOWNLOAD EBOOK

This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.