The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines

The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines

Author: Clifford A. Truesdell

Publisher: Springer

Published: 2012-01-19

Total Pages: 0

ISBN-13: 9783642810794

DOWNLOAD EBOOK

Mon but n'a jamais be de m'occuper des ces matieres comme physicien, mais seulement comme /ogicien ... F. REECH, 1856 I do not think it possible to write the history of a science until that science itself shall have been understood, thanks to a clear, explicit, and decent logical structure. The exuberance of dim, involute, and undisciplined his torical essays upon classical thermodynamics reflects the confusion of the theory itself. Thermodynamics, despite its long history, has never had the benefit of a magisterial synthesis like that which EULER gave to hydro dynamics in 1757 or that which MAXWELL gave to electromagnetism in 1873; the expositions in the works of discovery in thermodynamics stand a pole apart from the pellucid directness of the notes in which CAUCHY presented his creation and development of the theory of elasticity from 1822 to 1845. Thermodynamics was born in obscurity and disorder, not to say confusion, and there the common presentations of it have remained. With this tractate I aim to provide a simple logical structure for the classical thermodynamics of homogeneous fluid bodies. Like any logical structure, it is only one of many possible ones. I think it is as simple and pretty as can be.


A History of Thermodynamics

A History of Thermodynamics

Author: Ingo Müller

Publisher: Springer Science & Business Media

Published: 2007-07-16

Total Pages: 336

ISBN-13: 3540462279

DOWNLOAD EBOOK

This book offers an easy to read, all-embracing history of thermodynamics. It describes the long development of thermodynamics, from the misunderstood and misinterpreted to the conceptually simple and extremely useful theory that we know today. Coverage identifies not only the famous physicists who developed the field, but also engineers and scientists from other disciplines who helped in the development and spread of thermodynamics as well.


Modern Thermodynamics

Modern Thermodynamics

Author: Dilip Kondepudi

Publisher: John Wiley & Sons

Published: 2014-12-31

Total Pages: 550

ISBN-13: 111837181X

DOWNLOAD EBOOK

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into ‘thermodynamics’ and ‘kinetics’ into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists. Fully revised and expanded, this new edition includes the following updates and features: Includes a completely new chapter on Principles of Statistical Thermodynamics. Presents new material on solar and wind energy flows and energy flows of interest to engineering. Covers new material on self-organization in non-equilibrium systems and the thermodynamics of small systems. Highlights a wide range of applications relevant to students across physical sciences and engineering courses. Introduces students to computational methods using updated Mathematica codes. Includes problem sets to help the reader understand and apply the principles introduced throughout the text. Solutions to exercises and supplementary lecture material provided online at http://sites.google.com/site/modernthermodynamics/. Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition is an essential resource for undergraduate and graduate students taking a course in thermodynamics.


Carnot Cycle and Heat Engine Fundamentals and Applications

Carnot Cycle and Heat Engine Fundamentals and Applications

Author: Michel Feidt

Publisher: MDPI

Published: 2020-07-03

Total Pages: 140

ISBN-13: 3039288458

DOWNLOAD EBOOK

This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.


Reflections on the Motive Power of Fire

Reflections on the Motive Power of Fire

Author: Sadi Carnot

Publisher: Courier Corporation

Published: 2012-05-09

Total Pages: 185

ISBN-13: 0486174549

DOWNLOAD EBOOK

The title essay, along with other papers in this volume, laid the foundation of modern thermodynamics. Highly readable, "Reflections" contains no arguments that depend on calculus, examining the relation between heat and work in terms of heat in steam engines, air-engines, and an internal combustion machine. Translation of 1890 edition.


Fundamentals of Heat Engines

Fundamentals of Heat Engines

Author: Jamil Ghojel

Publisher: John Wiley & Sons

Published: 2020-04-20

Total Pages: 534

ISBN-13: 1119548764

DOWNLOAD EBOOK

Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.


Entropy Analysis in Thermal Engineering Systems

Entropy Analysis in Thermal Engineering Systems

Author: Yousef Haseli

Publisher: Academic Press

Published: 2019-10-23

Total Pages: 216

ISBN-13: 0128191694

DOWNLOAD EBOOK

Entropy Analysis in Thermal Engineering Systems is a thorough reference on the latest formulation and limitations of traditional entropy analysis. Yousef Haseli draws on his own experience in thermal engineering as well as the knowledge of other global experts to explain the definitions and concepts of entropy and the significance of the second law of thermodynamics. The design and operation of systems is also described, as well as an analysis of the relationship between entropy change and exergy destruction in heat conversion and transfer. The book investigates the performance of thermal systems and the applications of the entropy analysis in thermal engineering systems to allow the reader to make clearer design decisions to maximize the energy potential of a thermal system. - Includes applications of entropy analysis methods in thermal power generation systems - Explains the relationship between entropy change and exergy destruction in an energy conversion/transfer process - Guides the reader to accurately utilize entropy methods for the analysis of system performance to improve efficiency


Thermodynamics and Energy Conversion

Thermodynamics and Energy Conversion

Author: Henning Struchtrup

Publisher: Springer

Published: 2014-07-02

Total Pages: 596

ISBN-13: 3662437155

DOWNLOAD EBOOK

This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices. Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing and the evaluation of the related work losses. Better use of resources requires high efficiencies therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools. Topics include: car and aircraft engines, including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet; steam and gas power plants, including advanced regenerative systems, solar tower and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic power plants and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes and fuel cells; the microscopic definition of entropy. The book includes about 300 end-of-chapter problems for homework assignments and exams. The material presented suffices for two or three full-term courses on thermodynamics and energy conversion.


Every Life Is on Fire

Every Life Is on Fire

Author: Jeremy England

Publisher: Basic Books

Published: 2020-09-15

Total Pages: 185

ISBN-13: 1541699009

DOWNLOAD EBOOK

A preeminent physicist unveils a field-defining theory of the origins and purpose of life. Why are we alive? Most things in the universe aren't. And everything that is alive traces back to things that, puzzlingly, weren't. For centuries, the scientific question of life's origins has confounded us. But in Every Life Is on Fire, physicist Jeremy England argues that the answer has been under our noses the whole time, deep within the laws of thermodynamics. England explains how, counterintuitively, the very same forces that tend to tear things apart assembled the first living systems. But how life began isn't just a scientific question. We ask it because we want to know what it really means to be alive. So England, an ordained rabbi, uses his theory to examine how, if at all, science helps us find purpose in a vast and mysterious universe. In the tradition of Viktor Frankl's Man's Search for Meaning, Every Life Is on Fire is a profound testament to how something can come from nothing.


An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines

An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines

Author: Jerald A. Caton

Publisher: John Wiley & Sons

Published: 2015-12-14

Total Pages: 381

ISBN-13: 1119037565

DOWNLOAD EBOOK

This book provides an introduction to basic thermodynamic engine cycle simulations, and provides a substantial set of results. Key features includes comprehensive and detailed documentation of the mathematical foundations and solutions required for thermodynamic engine cycle simulations. The book includes a thorough presentation of results based on the second law of thermodynamics as well as results for advanced, high efficiency engines. Case studies that illustrate the use of engine cycle simulations are also provided.