Deep Learning for NLP and Speech Recognition

Deep Learning for NLP and Speech Recognition

Author: Uday Kamath

Publisher: Springer

Published: 2019-06-10

Total Pages: 640

ISBN-13: 3030145964

DOWNLOAD EBOOK

This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.


Readings in Speech Recognition

Readings in Speech Recognition

Author: Alexander Waibel

Publisher: Elsevier

Published: 1990-12-25

Total Pages: 640

ISBN-13: 0080515843

DOWNLOAD EBOOK

After more than two decades of research activity, speech recognition has begun to live up to its promise as a practical technology and interest in the field is growing dramatically. Readings in Speech Recognition provides a collection of seminal papers that have influenced or redirected the field and that illustrate the central insights that have emerged over the years. The editors provide an introduction to the field, its concerns and research problems. Subsequent chapters are devoted to the main schools of thought and design philosophies that have motivated different approaches to speech recognition system design. Each chapter includes an introduction to the papers that highlights the major insights or needs that have motivated an approach to a problem and describes the commonalities and differences of that approach to others in the book.


Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition

Author: Joseph Keshet

Publisher: John Wiley & Sons

Published: 2009-04-27

Total Pages: 268

ISBN-13: 9780470742037

DOWNLOAD EBOOK

This book discusses large margin and kernel methods for speech and speaker recognition Speech and Speaker Recognition: Large Margin and Kernel Methods is a collation of research in the recent advances in large margin and kernel methods, as applied to the field of speech and speaker recognition. It presents theoretical and practical foundations of these methods, from support vector machines to large margin methods for structured learning. It also provides examples of large margin based acoustic modelling for continuous speech recognizers, where the grounds for practical large margin sequence learning are set. Large margin methods for discriminative language modelling and text independent speaker verification are also addressed in this book. Key Features: Provides an up-to-date snapshot of the current state of research in this field Covers important aspects of extending the binary support vector machine to speech and speaker recognition applications Discusses large margin and kernel method algorithms for sequence prediction required for acoustic modeling Reviews past and present work on discriminative training of language models, and describes different large margin algorithms for the application of part-of-speech tagging Surveys recent work on the use of kernel approaches to text-independent speaker verification, and introduces the main concepts and algorithms Surveys recent work on kernel approaches to learning a similarity matrix from data This book will be of interest to researchers, practitioners, engineers, and scientists in speech processing and machine learning fields.


Introduction to EEG- and Speech-Based Emotion Recognition

Introduction to EEG- and Speech-Based Emotion Recognition

Author: Priyanka A. Abhang

Publisher: Academic Press

Published: 2016-03-23

Total Pages: 200

ISBN-13: 0128045310

DOWNLOAD EBOOK

Introduction to EEG- and Speech-Based Emotion Recognition Methods examines the background, methods, and utility of using electroencephalograms (EEGs) to detect and recognize different emotions. By incorporating these methods in brain-computer interface (BCI), we can achieve more natural, efficient communication between humans and computers. This book discusses how emotional states can be recognized in EEG images, and how this is useful for BCI applications. EEG and speech processing methods are explored, as are the technological basics of how to operate and record EEGs. Finally, the authors include information on EEG-based emotion recognition, classification, and a proposed EEG/speech fusion method for how to most accurately detect emotional states in EEG recordings. - Provides detailed insight on the science of emotion and the brain signals underlying this phenomenon - Examines emotions as a multimodal entity, utilizing a bimodal emotion recognition system of EEG and speech data - Details the implementation of techniques used for acquiring as well as analyzing EEG and speech signals for emotion recognition


Automatic Speech Recognition

Automatic Speech Recognition

Author: Dong Yu

Publisher: Springer

Published: 2014-11-11

Total Pages: 329

ISBN-13: 1447157796

DOWNLOAD EBOOK

This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.


Computational Paralinguistics

Computational Paralinguistics

Author: Björn Schuller

Publisher: John Wiley & Sons

Published: 2013-09-17

Total Pages: 330

ISBN-13: 1118706625

DOWNLOAD EBOOK

This book presents the methods, tools and techniques that are currently being used to recognise (automatically) the affect, emotion, personality and everything else beyond linguistics (‘paralinguistics’) expressed by or embedded in human speech and language. It is the first book to provide such a systematic survey of paralinguistics in speech and language processing. The technology described has evolved mainly from automatic speech and speaker recognition and processing, but also takes into account recent developments within speech signal processing, machine intelligence and data mining. Moreover, the book offers a hands-on approach by integrating actual data sets, software, and open-source utilities which will make the book invaluable as a teaching tool and similarly useful for those professionals already in the field. Key features: Provides an integrated presentation of basic research (in phonetics/linguistics and humanities) with state-of-the-art engineering approaches for speech signal processing and machine intelligence. Explains the history and state of the art of all of the sub-fields which contribute to the topic of computational paralinguistics. C overs the signal processing and machine learning aspects of the actual computational modelling of emotion and personality and explains the detection process from corpus collection to feature extraction and from model testing to system integration. Details aspects of real-world system integration including distribution, weakly supervised learning and confidence measures. Outlines machine learning approaches including static, dynamic and context‐sensitive algorithms for classification and regression. Includes a tutorial on freely available toolkits, such as the open-source ‘openEAR’ toolkit for emotion and affect recognition co-developed by one of the authors, and a listing of standard databases and feature sets used in the field to allow for immediate experimentation enabling the reader to build an emotion detection model on an existing corpus.


Robust Automatic Speech Recognition

Robust Automatic Speech Recognition

Author: Jinyu Li

Publisher: Academic Press

Published: 2015-10-30

Total Pages: 308

ISBN-13: 0128026162

DOWNLOAD EBOOK

Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years


Distant Speech Recognition

Distant Speech Recognition

Author: Matthias Woelfel

Publisher: John Wiley & Sons

Published: 2009-04-20

Total Pages: 600

ISBN-13: 0470714077

DOWNLOAD EBOOK

A complete overview of distant automatic speech recognition The performance of conventional Automatic Speech Recognition (ASR) systems degrades dramatically as soon as the microphone is moved away from the mouth of the speaker. This is due to a broad variety of effects such as background noise, overlapping speech from other speakers, and reverberation. While traditional ASR systems underperform for speech captured with far-field sensors, there are a number of novel techniques within the recognition system as well as techniques developed in other areas of signal processing that can mitigate the deleterious effects of noise and reverberation, as well as separating speech from overlapping speakers. Distant Speech Recognitionpresents a contemporary and comprehensive description of both theoretic abstraction and practical issues inherent in the distant ASR problem. Key Features: Covers the entire topic of distant ASR and offers practical solutions to overcome the problems related to it Provides documentation and sample scripts to enable readers to construct state-of-the-art distant speech recognition systems Gives relevant background information in acoustics and filter techniques, Explains the extraction and enhancement of classification relevant speech features Describes maximum likelihood as well as discriminative parameter estimation, and maximum likelihood normalization techniques Discusses the use of multi-microphone configurations for speaker tracking and channel combination Presents several applications of the methods and technologies described in this book Accompanying website with open source software and tools to construct state-of-the-art distant speech recognition systems This reference will be an invaluable resource for researchers, developers, engineers and other professionals, as well as advanced students in speech technology, signal processing, acoustics, statistics and artificial intelligence fields.