The Process of Learning Mathematics

The Process of Learning Mathematics

Author: L. R. Chapman

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 407

ISBN-13: 1483147584

DOWNLOAD EBOOK

The Process of Learning Mathematics describes the process of learning mathematics and covers topics ranging from the nature of mathematics to the role of intuition and logic in mathematics; the thought processes involved in the teaching of mathematics; reflective intelligence and the use of symbols; and discovery as a way of learning mathematics. Computer-assisted instruction in mathematics is also considered. This book is comprised of 19 chapters and begins with a reflection on the nature of mathematics, followed by a discussion on the importance of intuition and logic in mathematics. The ideas of generalization, structure, approximations, and the evolution of some particular aspect of applied mathematics are then examined from the viewpoint of a teacher. Subsequent chapters deal with schematic learning; motivation and emotional and interpersonal factors; uses of programmed material in British schools and colleges; and structural apparatuses used in teaching mathematics. The Midlands Mathematical Experiment and the Nuffield Foundation Mathematics Teaching Project in Britain are also described. This monograph will be of interest to teachers and students of mathematics.


Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12

Author: John Hattie

Publisher: Corwin Press

Published: 2016-09-15

Total Pages: 209

ISBN-13: 1506362958

DOWNLOAD EBOOK

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.


Helping Children Learn Mathematics

Helping Children Learn Mathematics

Author: National Research Council

Publisher: National Academies Press

Published: 2002-07-31

Total Pages: 53

ISBN-13: 0309131987

DOWNLOAD EBOOK

Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.


Teaching Mathematics Meaningfully

Teaching Mathematics Meaningfully

Author: David H. Allsopp

Publisher: Brookes Publishing Company

Published: 2007

Total Pages: 316

ISBN-13:

DOWNLOAD EBOOK

Making mathematics concepts understandable is a challenge for any teacher--a challenge that's more complex when a classroom includes students with learning difficulties. With this highly practical resource, educators will have just what they need to teach mathematics with confidence: research-based strategies that really work with students who have learning disabilities, ADHD, or mild cognitive disabilities. This urgently needed guidebook helps teachers Understand why students struggle.Teachers will discover how the common learning characteristics of students with learning difficulties create barriers to understanding mathematics. Review the Big Ideas. Are teachers focusing on the right things? A helpful primer on major NCTM-endorsed mathematical concepts and processes helps them be sure. Directly address students' learning barriers. With the lesson plans, practical strategies, photocopiable information-gathering forms, and online strategies in action, teachers will have concrete ways to help students grasp mathematical concepts, improve their proficiency, and generalize knowledge in multiple contexts. Check their own strengths and needs. Educators will reflect critically on their current practices with a thought-provoking questionnaire. With this timely book--filled with invaluable ideas and strategies adaptable for grades K-12--educators will know just what to teach and how to teach it to students with learning difficulties.


Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12

Author: Peter Liljedahl

Publisher: Corwin Press

Published: 2020-09-28

Total Pages: 454

ISBN-13: 1544374844

DOWNLOAD EBOOK

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.


Mathematics Education

Mathematics Education

Author: Lyn D. English

Publisher: Routledge

Published: 1995

Total Pages: 365

ISBN-13: 0805814574

DOWNLOAD EBOOK

First Published in 1995. Routledge is an imprint of Taylor & Francis, an informa company.


Mathematics Learning in Early Childhood

Mathematics Learning in Early Childhood

Author: National Research Council

Publisher: National Academies Press

Published: 2009-11-13

Total Pages: 399

ISBN-13: 0309147433

DOWNLOAD EBOOK

Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.


How Chinese Learn Mathematics

How Chinese Learn Mathematics

Author: Lianghuo Fan

Publisher: World Scientific

Published: 2004

Total Pages: 594

ISBN-13: 9789812562241

DOWNLOAD EBOOK

The book has been written by an international group of very activeresearchers and scholars who have a passion for the study of Chinesemathematics education. It aims to provide readers with a comprehensiveand updated picture of the teaching and learning of mathematicsinvolving Chinese students from various perspectives, including theways in which Chinese students learn mathematics in classrooms, schools and homes, the influence of the cultural and socialenvironment on Chinese students'' mathematics learning, and thestrengths and weaknesses of the ways in which Chinese learnmathematics


Semiotics as a Tool for Learning Mathematics

Semiotics as a Tool for Learning Mathematics

Author: Adalira Sáenz-Ludlow

Publisher: Springer

Published: 2015-12-17

Total Pages: 224

ISBN-13: 9463003371

DOWNLOAD EBOOK

Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.