Unity of science was once a very popular idea among both philosophers and scientists. But it has fallen out of fashion, largely because of its association with reductionism and the challenge from multiple realisation. Pluralism and the disunity of science are the new norm, and higher-level natural kinds and special science laws are considered to have an important role in scientific practice. What kind of reductionism does multiple realisability challenge? What does it take to reduce one phenomenon to another? How do we determine which kinds are natural? What is the ontological basis of unity? In this Element, Tuomas Tahko examines these questions from a contemporary perspective, after a historical overview. The upshot is that there is still value in the idea of a unity of science. We can combine a modest sense of unity with pluralism and give an ontological analysis of unity in terms of natural kind monism. This title is available as Open Access on Cambridge Core.
The first volume in this new series explores, through extensive co-operation, new ways of achieving the integration of science in all its diversity. The book offers essays from important and influential philosophers in contemporary philosophy, discussing a range of topics from philosophy of science to epistemology, philosophy of logic and game theoretical approaches. It will be of interest to philosophers, computer scientists and all others interested in the scientific rationality.
As a leading member of the Vienna Circle, Rudolph Carnap's aim was to bring about a "unified science" by applying a method of logical analysis to the empirical data of all the sciences. This work, first published in English in 1934, endeavors to work out a way in which the observation statements required for verification are not private to the observer. The work shows the strong influence of Wittgenstein, Russell, and Frege.
Can we expect our scientific theories to make up a unified structure, or do they form a kind of "patchwork" whose pieces remain independent from each other? Does the proliferation of sometimes-incompatible representations of the same phenomenon compromise the ability of science to deliver reliable knowledge? Is there a single correct way to classify things that science should try to discover, or is taxonomic pluralism here to stay? These questions are at the heart of philosophical debate on the unity or plurality of science, one of the most central issues in philosophy of science today. This book offers a critical overview and a new structure of this debate. It focuses on the methodological, epistemic, and metaphysical commitments of various philosophical attitudes surrounding monism and pluralism, and offers novel perspectives and pluralist theses on scientific methods and objects, reductionism, plurality of representations, natural kinds, and scientific classifications.
One of the most prominent scholars of the first half of the twentieth century, John Dewey was an American philosopher, psychologist, and educational reformer. A co-founder of the pragmatism movement, Dewey was also a pioneer in functional psychology, an innovative theorist of democracy and a leader of the progressive movement in education. For the first time in publishing history, this eBook presents Dewey’s complete works, with numerous illustrations, rare texts, informative introductions and the usual Delphi bonus material. (Version 1) * Beautifully illustrated with images relating to Dewey’s life and works * Concise introductions to the major texts * All the published books, with individual contents tables * Works appear with their original hyperlinked footnotes * Rare texts appearing for the first time in digital publishing * Images of how the books were first published, giving your eReader a taste of the original texts * Excellent formatting of the texts * Ordering of texts into chronological order CONTENTS: The Books Psychology (1887) My Pedagogic Creed (1897) The School and Society (1899) Leibniz’s New Essays Concerning the Human Understanding (1902) The Child and the Curriculum (1902) Studies in Logical Theory (1903) Ethics (1908) Moral Principles in Education (1909) How We Think (1910) The Influence of Darwin on Philosophy (1910) Interest and Effort in Education (1913) Schools of To-morrow (1915) Democracy and Education (1916) Essays in Experimental Logic (1916) Reconstruction in Philosophy (1920) Letters from China and Japan (1920) Human Nature and Conduct (1922) Experience and Nature (1925) The Public and Its Problems (1927) Impressions of Soviet Russia and the Revolutionary World (1929) The Quest for Certainty (1929) Individualism Old and New (1931) Philosophy and Civilization (1931) Art as Experience (1934) A Common Faith (1934) Liberalism and Social Action (1935) The Philosophy of the Arts (1938) Experience and Education (1938) Logic, the Theory of Inquiry (1939) Theory of Valuation (1939) Freedom and Culture (1939) Articles in ‘Popular Science Monthly’
In this thought-provoking book Küppers, an internationally renowned physicist, philosopher and theoretical biologist, addresses a number of science's deepest questions: Can physics advance to the origin of all things and explain the unique phenomena of life, time and history? Are there unsolvable enigmas of the world? How did life originate? Is language a general phenomenon of Nature? What is time? Is it possible to express the history of the world in formulae? Where is science leading us? These and other provocative questions essential for a deeper understanding of the world are treated here in a refreshing and stimulating manner.
At the 1969 annual meeting of the American Association for the Ad vancement ofScience, held in Boston on December 27-29, a sequence of symposia on the philosophical foundations of science was organized jointly by Section L of the Association and the Boston Colloquium for the Philosophy of Science. Section L is devoted to the history, philos ophy, logic and sociology of science, with broad connotations extended both to 'science' and to 'philosophy'. With collaboration generously extended by other and more specialized Sections of the AAAS, the Section L program took an unusually rich range of topics, and indeed the audiences were large, and the discussions lively. This book, regrettably delayed in publication, contains the major papers from those symposia of 1969. In addition, it contains the distin guished George Sarton Memorial Lecture of that meeting, 'Boltzmann, Monocycles and Mechanical Explanation' by Martin J. Klein. Some additions and omissions should be noted: In Part 1, dedicated to the 450th anniversary of the birth of Leonardo da Vinci, we have been una bie to include a contrihution by Elmer Belt who was prevented by storms from participating. In Part II, on physics and the explanation of life, we were unable to persuade Isaac Asimov to overcome his modesty about the historical remarks he made under the title 'Arrhenius Revisited'.
Here is an idea that just might save the world. It is that science, properly understood, provides us with the methodological key to the salvation of humanity. A version of this idea can be found in the works of Karl Popper. Famously, Popper argued that science cannot verify theories but can only refute them, and this is how science makes progress. Scientists are forced to think up something better, and it is this, according to Popper, that drives science forward.But Nicholas Maxwell finds a flaw in this line of argument. Physicists only ever accept theories that are unified – theories that depict the same laws applying to the range of phenomena to which the theory applies – even though many other empirically more successful disunified theories are always available. This means that science makes a questionable assumption about the universe, namely that all disunified theories are false. Without some such presupposition as this, the whole empirical method of science breaks down.By proposing a new conception of scientific methodology, which can be applied to all worthwhile human endeavours with problematic aims, Maxwell argues for a revolution in academic inquiry to help humanity make progress towards a better, more civilized and enlightened world.
Scientists use concepts and principles that are partly specific for their subject matter, but they also share part of them with colleagues working in different fields. Compare the biological notion of a 'natural kind' with the general notion of 'confirmation' of a hypothesis by certain evidence. Or compare the physical principle of the 'conservation of energy' and the general principle of 'the unity of science'. Scientists agree that all such notions and principles aren't as crystal clear as one might wish. An important task of the philosophy of the special sciences, such as philosophy of physics, of biology and of economics, to mention only a few of the many flourishing examples, is the clarification of such subject specific concepts and principles. Similarly, an important task of 'general' philosophy of science is the clarification of concepts like 'confirmation' and principles like 'the unity of science'. It is evident that clarfication of concepts and principles only makes sense if one tries to do justice, as much as possible, to the actual use of these notions by scientists, without however following this use slavishly. That is, occasionally a philosopher may have good reasons for suggesting to scientists that they should deviate from a standard use. Frequently, this amounts to a plea for differentiation in order to stop debates at cross-purposes due to the conflation of different meanings. While the special volumes of the series of Handbooks of the Philosophy of Science address topics relative to a specific discipline, this general volume deals with focal issues of a general nature. After an editorial introduction about the dominant method of clarifying concepts and principles in philosophy of science, called explication, the first five chapters deal with the following subjects. Laws, theories, and research programs as units of empirical knowledge (Theo Kuipers), various past and contemporary perspectives on explanation (Stathis Psillos), the evaluation of theories in terms of their virtues (Ilkka Niiniluto), and the role of experiments in the natural sciences, notably physics and biology (Allan Franklin), and their role in the social sciences, notably economics (Wenceslao Gonzalez). In the subsequent three chapters there is even more attention to various positions and methods that philosophers of science and scientists may favor: ontological, epistemological, and methodological positions (James Ladyman), reduction, integration, and the unity of science as aims in the sciences and the humanities (William Bechtel and Andrew Hamilton), and logical, historical and computational approaches to the philosophy of science (Atocha Aliseda and Donald Gillies).The volume concludes with the much debated question of demarcating science from nonscience (Martin Mahner) and the rich European-American history of the philosophy of science in the 20th century (Friedrich Stadler). - Comprehensive coverage of the philosophy of science written by leading philosophers in this field - Clear style of writing for an interdisciplinary audience - No specific pre-knowledge required
This volume, the first of a two-volume set, provides a foundation for future research and development in science curriculum. Drawing upon complexity and systems theories, this book provides a framework for science curriculum that tackles and transform the interrelated and socio-ecological causes of our ecological crises in the Anthropocene. Chapters provide a foundational conceptual framework that can inspire and motivate educators and researchers alike, and push the boundaries of science curriculum research, theory, and practice The result is a refreshing and hopeful look at PK-12 science curriculum as a lever for positive change amidst our current global trajectory in the 21st century.