Multi-criteria Decision Analysis

Multi-criteria Decision Analysis

Author: Alessio Ishizaka

Publisher: John Wiley & Sons

Published: 2013-06-10

Total Pages: 260

ISBN-13: 1118644913

DOWNLOAD EBOOK

This book presents an introduction to MCDA followed by more detailed chapters about each of the leading methods used in this field. Comparison of methods and software is also featured to enable readers to choose the most appropriate method needed in their research. Worked examples as well as the software featured in the book are available on an accompanying website.


Multi-Criteria Decision Analysis to Support Healthcare Decisions

Multi-Criteria Decision Analysis to Support Healthcare Decisions

Author: Kevin Marsh

Publisher: Springer

Published: 2018-05-08

Total Pages: 0

ISBN-13: 9783319837635

DOWNLOAD EBOOK

Representing the first collection on the topic, this book builds from foundations to case studies, to future prospects, providing the reader with a rich and comprehensive understanding of the use of multi-criteria decision analysis (MCDA) in healthcare. The first section of the collection presents the foundations of MCDA as it is applied to healthcare decisions, providing guidance on the ethical and theoretical underpinnings of MCDA and how to select MCDA methods appropriate to different decision settings. Section two comprises a collection of case studies spanning the decision continuum, including portfolio development, benefit–risk assessment, health technology assessment, priority setting, resource optimisation, clinical practice and shared decision making. Section three explores future directions in the application of MCDA to healthcare and identifies opportunities for further research to support these.


Methods in Sustainability Science

Methods in Sustainability Science

Author: Jingzheng Ren

Publisher: Elsevier

Published: 2021-08-05

Total Pages: 446

ISBN-13: 012824240X

DOWNLOAD EBOOK

Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization presents cutting edge, detailed methodologies needed to create sustainable growth in any field or industry, including life cycle assessments, building design, and energy systems. The book utilized a systematic structured approach to each of the methodologies described in an interdisciplinary way to ensure the methodologies are applicable in the real world, including case studies to demonstrate the methods. The chapters are written by a global team of authors in a variety of sustainability related fields. Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization will provide academics, researchers and practitioners in sustainability, especially environmental science and environmental engineering, with the most recent methodologies needed to maintain a sustainable future. It is also a necessary read for postgraduates in sustainability, as well as academics and researchers in energy and chemical engineering who need to ensure their industrial methodologies are sustainable. - Provides a comprehensive overview of the most recent methodologies in sustainability assessment, prioritization, improvement, design and optimization - Sections are organized in a systematic and logical way to clearly present the most recent methodologies for sustainability and the chapters utilize an interdisciplinary approach that covers all considerations of sustainability - Includes detailed case studies demonstrating the efficacies of the described methods


Multiple Criteria Decision Aid

Multiple Criteria Decision Aid

Author: Jason Papathanasiou

Publisher: Springer

Published: 2018-09-19

Total Pages: 182

ISBN-13: 3319916483

DOWNLOAD EBOOK

Multiple criteria decision aid (MCDA) methods are illustrated in this book through theoretical and computational techniques utilizing Python. Existing methods are presented in detail with a step by step learning approach. Theoretical background is given for TOPSIS, VIKOR, PROMETHEE, SIR, AHP, goal programming, and their variations. Comprehensive numerical examples are also discussed for each method in conjunction with easy to follow Python code. Extensions to multiple criteria decision making algorithms such as fuzzy number theory and group decision making are introduced and implemented through Python as well. Readers will learn how to implement and use each method based on the problem, the available data, the stakeholders involved, and the various requirements needed. Focusing on the practical aspects of the multiple criteria decision making methodologies, this book is designed for researchers, practitioners and advanced graduate students in the applied mathematics, information systems, operations research and business administration disciplines, as well as other engineers and scientists oriented in interdisciplinary research. Readers will greatly benefit from this book by learning and applying various MCDM/A methods. (Adiel Teixeira de Almeida, CDSID-Center for Decision System and Information Development, Universidade Federal de Pernambuco, Recife, Brazil) Promoting the development and application of multicriteria decision aid is essential to ensure more ethical and sustainable decisions. This book is a great contribution to this objective. It is a perfect blend of theory and practice, providing potential users and researchers with the theoretical bases of some of the best-known methods as well as with the computing tools needed to practice, to compare and to put these methods to use. (Jean-Pierre Brans, Vrije Universiteit Brussel, Brussels, Belgium) This book is intended for researchers, practitioners and students alike in decision support who wish to familiarize themselves quickly and efficiently with multicriteria decision aiding algorithms. The proposed approach is original, as it presents a selection of methods from the theory to the practical implementation in Python, including a detailed example. This will certainly facilitate the learning of these techniques, and contribute to their effective dissemination in applications. (Patrick Meyer, IMT Atlantique, Lab-STICC, Univ. Bretagne Loire, Brest, France)